CMR : với mọi x, y, z thuộc Q ( x, y, z > 0) thì :
1<\(\frac{x}{x+y}\)+\(\frac{y}{y+z}\)+\(\frac{z}{x+z}\)< z
THANKS NHÌU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
vì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>=\frac{9}{x+1+y+1+z+1}=\frac{9}{1+3}=\frac{9}{4}\)(bđt svacxo)
\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)< =3-\frac{9}{4}=\frac{3}{4}\)
dấu = xảy ra khi x=y=z=\(\frac{1}{3}\)
a) vì x,y \(\in\)Z \(\Rightarrow\)x + y \(\in\)Z
\(\Rightarrow\)[ x + y ] = x + y ( 1 )
[ x ] = x ; [ y ] = y
\(\Rightarrow\)[ x ] + [ y ] = x + y ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)[ x + y ] = [ x ] + [ y ]
b) Ta có : y = [ y ] + { y } trong đó [ y ] \(\in\)Z ; 0 \(\le\){ y } < 1
\(\Rightarrow\)[ x + y ] = [ x + [ y ] + { y } ] ( 1 )
x \(\in\)Z ; [ y ] \(\in\)Z ; x + [ y ] \(\in\)Z
Từ ( 1 ) \(\Rightarrow\)[ x + y ] = [ x + [ y ] ] = x + [ y ]
Ta có : \(\frac{x}{x+y}>\frac{x}{x+y+z}.\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\)\(\frac{x+y+z}{x+y+z}=1\)
Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>1\)\(\left(1\right)\)
Lại có : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\)
\(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)
\(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{2x+2y+2z}{x+y+z}=2\)
Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(đpcm\right)\)