tìm giá trị nguyên lớn nhất của x thỏa mãn trị tuyệt đối của |x.(x-3)| = x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\orbr{\begin{cases}x\cdot\left(x-3\right)=x\\x\cdot\left(x-3\right)=-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-3=\frac{x}{x}\\x-3=-\frac{x}{x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1+3\\x=-1+3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Vậy x=2 hoặc x=4
| x.( x^2 - 3 ) | = x <=> x.( x^2 - 3 ) = x hoặc = - x
TH1 : x.( x^2 - 1 ) = x <=> x^2 - 3 = 1 => x^2 = 2^2 => x = 2 ( thỏa mãn đề bài )
TH2 : x.( x^2 - 1 ) = - x <=> x^2 - 3 = - 1 => x^2 = 2 ( ko thỏa mãn đề bài )
Vậy x = 2
\(\left|5x-3\right|< 4\)
mà \(\left|5x-3\right|\ge0\)
\(\Rightarrow\left|5x-3\right|\in\left\{0;1;2;3\right\}\)
\(\Rightarrow5x-3\in\left\{0;1;-1;2;-2;3;-3\right\}\)
Với \(5x-3=0\Rightarrow x=0,6\left(ktm\right)\)
Với \(5x-3=1\Rightarrow x=0,8\left(ktm\right)\)
Với \(5x-3=-1\Rightarrow x=0,4\left(ktm\right)\)
Với \(5x-3=2\Rightarrow x=1\)
Với \(5x-3=-2\Rightarrow x=0,2\left(ktm\right)\)
Với \(5x-3=3\Rightarrow x=1,2\left(ktm\right)\)
Với \(5x-3=-3\Rightarrow x=0\)
Vậy \(x\in\left\{0;1\right\}\)