Cho tam giác ABC. Trên tia đối của các tia BC và CB lần lượt lấy điểm D vad E sao cho BD=AB,CE=CA. Trên tia phân giác Bx của hóc ABD cắt AD tại M, tia phân giác Cy của góc ACE cắt AE tại N. CMR: MN//Bc và MN=1/2 chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải : (tiếp hơi chậm nhưng k sao :v)
a)Xét \(\Delta DMB\) và \(\Delta ENC\)có :
\(\widehat{MDB}=\widehat{NEC}=90^o\left(gt\right)\)
\(BD=CE\left(gt\right)\)
\(\widehat{B}=\widehat{ACB}\)(\(\Delta ABC\) cân tại A)
Mà \(\widehat{ACB}=\widehat{NCE}\)(hai góc đối đỉnh)
\(\Rightarrow\widehat{B}=\widehat{NCE}\)
\(\Rightarrow\Delta DMB=\Delta ENC\left(c.g.c\right)\)
\(\Rightarrow DM=EN\)(cặp cạnh tương ứng bằng nhau)
b)Ta có : \(MD\perp BC\) và \(NE\perp BC\)
\(\Rightarrow MD//NE\)
\(\Rightarrow\widehat{DMI}=\widehat{INE}\)(cặp góc so le trong bằng nhau)
Xét \(\Delta IMD\) và \(\Delta INE\) có :
\(\widehat{DMI}=\widehat{INE}\left(cmt\right)\)
\(DM=EN\)(cm câu a))
\(\widehat{MDI}=\widehat{NEI}=90^o\left(gt\right)\)
\(\Rightarrow\Delta IMD=\Delta INE\left(g.c.g\right)\)
\(\Rightarrow IM=IN\)(cặp cạnh tương ứng bằng nhau)
\(\Rightarrow\)I là trung điểm của MN
\(\Rightarrowđpcm\)
a) Xét tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{NCE}\) ( đối đỉnh)
=> \(\widehat{ABC}=\widehat{NCE}\) hay \(\widehat{MBD}=\widehat{NCE}\)
Xét tam giác vuông MBD và tam giác vuông NCE có:
\(\widehat{MBD}=\widehat{NCE}\)( chứng minh trên)
CE=BD
=> Tam giác MBD= tam giác NCE
=> DM=EN
b) Gọi I là giao điểm của MN và BC
Xét tam giác vuông DMI và tam giác vuông ENI có:
DM=EN ( theo câu a)
\(\widehat{MID}=\widehat{NIE}\) ( đối đỉnh)
=> Tam giác DMI= Tam giác ENI
=> MI=NI
=> I là trung điểm MN
Vậy đường thẳng BC cắt MN tại trung điểm I của MN
a) Tứ giác BHKC là hình bình hành vì có hai đường chéo BK và CH cắt nhau tại điểm A là trung điểm của mỗi đường.
b) Tứ giác AHIK là hình bình hành nên AK // IH và AK = IH suy ra AB // IH và AB = IH.
Tứ giác ABIH là hình bình hành, do đó IA // HB.
AM là đường trung bình của tam giác BHC, suy ra MB = MC.
c) Tứ giác DEKH là hình thang vì có HK // DE.
Hình thang DEKH là hình thang cân
.............................
Xét ΔAED và ΔACB có:
AE=AC(gt)
\(\widehat{EAD}=\widehat{CAB}\left(dd\right)\)
AD=AB(gt)
=>ΔAED=ΔACB(c.g.c)
=>\(\widehat{ADE}=\widehat{ABC}\). Mà hai góc này ở vị trí sole trong)
=>BC//DE
b)Xét ΔAMD và ΔANB có:
\(\widehat{ADM}=\widehat{ABN}\left(cmt\right)\)
AD=AB(gt)
\(\widehat{MAD}=\widehat{NAB}\left(dd\right)\)
=>ΔAMD=ΔANB(g.c.g)
=>AM=AN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE