Giải hệ phương trình :\(\left\{{}\begin{matrix}x^2+y^2-3x+4y=1\\3x^2-2y^2-9x-8y=3\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3y^2-9x+12y=3\\3x^2-2y^2-9x-8y=3\end{matrix}\right.\) (nhân pt thứ nhất của hệ với 3)
Lấy pt trên trừ pt dưới thu được:
\(5y^2+20y=0\Leftrightarrow\left[{}\begin{matrix}y=-4\\y=0\end{matrix}\right.\)
Làm nốt và em không chắc:v
phân tích pt1 thành (x+2)(x2+y2-1)=0
\(\Rightarrow\)x= -2 hoặc y2=1-x2
Nếu x=-2 thay vào pt2
Nếu y2=1-x2.Thay vào pt2 để đưa về biến x
Nhân liên hợp 2 vế vs \(\sqrt{2-x^2}-1\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2-6x+8y=2\\3x^2-2y^2-9x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow5x^2-15x=5\)
\(\Leftrightarrow x^2-3x-1=0\)
\(\Delta=\left(-3\right)^2-4.\left(-1\right)=13\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)
Thế \(x=\frac{3+\sqrt{13}}{2}\)vào phương trình đầu ta được :
\(\frac{22+6\sqrt{13}}{4}+y^2-\frac{9+3\sqrt{13}}{2}+4y=1\)
\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)
Thế \(x=\frac{3-\sqrt{13}}{2}\) vào phương trình đầu ta được :
\(\frac{22-6\sqrt{13}}{4}+y^2-\frac{9-3\sqrt{13}}{2}+4y=1\)
\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};-4\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};-4\right)\end{matrix}\right.\)