K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

A B C D E I

Gỉa sử ngũ giác ABCDE thảo mãn điều kiện bài toán .Tam giác ABCD và tam giác ECD  có \(S_{BCD}=S_{ECD}=1\), đáy CD chung nên các đường cao hạ từ B và E xuống CD bằng nhau \(\Rightarrow EB//CD\)

Tương tự ta có : \(AC//ED\) , \(BD//AE\) , \(CE//AB\)\(DA//BC\)

Gọi \(I=EC\Omega BC\Rightarrow\)ABIE là hình bình hành 

\(\Rightarrow S_{IBE}=S_{ABE}=1\). Đặt \(S_{ICD}=x< 1\)

\(\Rightarrow S_{IBC}=S_{BCD}-S_{ICD}=1-x=S_{BCD}-S_{ICD}=S_{IED}\)

Lại có : \(\frac{S_{ICD}}{S_{IDE}}=\frac{IC}{IE}=\frac{S_{IBC}}{S_{IBE}}\)HAY \(\frac{x}{1-x}=\frac{1-x}{1}\Rightarrow x^2-3x+1=0\)

\(\Rightarrow x=\frac{3\pm\sqrt{5}}{2}\)do x < 1  \(\Rightarrow x=\frac{3-\sqrt{5}}{2}\)

Vậy \(S_{IED}=\frac{\sqrt{5}-1}{2}\). Do đó \(S_{ABCDE}=S_{EAB}+S_{EBI}+S_{BCD}+S_{IED}=3+\frac{\sqrt{5}-1}{2}=\frac{5+\sqrt{5}}{2}\left(đvđt\right)\)

Chúc bạn học tốt !!!

W
15 tháng 4 2020

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiihhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggcccccccccccccccccccccccccccccccccccccccc

17 tháng 2 2022

x y 1 1 A B C D E M

Ta thấy \(\left[BCD\right]=\left[EDC\right]=1\Rightarrow d\left(B,CD\right)=d\left(E,CD\right)\Rightarrow BE||CD\)

Tương tự \(AB||CE,AE||BD\). Gọi giao điểm của \(BD,CE\) là \(M\) thì \(ABME\) là hình bình hành

Suy ra \(\left[BME\right]=\left[BAE\right]=1\)

Ta có \(x+y=\left[CDE\right]=1;\)\(\frac{x}{y}=\frac{MC}{ME}=\sqrt{\frac{x}{\left[BME\right]}}=\sqrt{x}\)

Giải hệ \(\hept{\begin{cases}x+y=1\\\frac{x}{y}=\sqrt{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\x\left(\frac{x}{y^2}-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\\frac{1-y}{y^2}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-y\\y^2+y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\) (vì \(x,y>0\))

Vậy diện tích của ngũ giác đó là \(\left[ABCDE\right]=y+3=\frac{-1+\sqrt{5}}{2}+3=\frac{5+\sqrt{5}}{2}.\)

17 tháng 8 2016

Hình vẽ: Gọi gia điểm của AC và BD là F.

CM AEDF là hình bình hành từ đó suy ra SADE=SADF=1.SADE=SADF=1.

Đặt SBFC=x⇒SCDF=1−x.SBFC=x⇒SCDF=1−x.

CM ΔBFCΔBFC đồng dạng với ΔDFA.ΔDFA.

Tìm được SCDF=−1+√52.SCDF=−1+52.

⇒So=3.618033989dm2⇒So=3.618033989dm2.

17 tháng 8 2016

Giả sử ngũ giác \(ABCDE\) thỏa mãn đk bài toán

Xét \(\Delta BCD\)Và \(ECD\)và \(S_{BCD}=S_{ECD}\)đáy \(CD\)chung, các đường cao hạ từ \(B\)và \(E\)xuống \(CD\) bằng nhau => \(EB\)\(CD\),Tương tự \(AC\)//\(ED\) ,\(BD\)\(AE\), \(CE\)\(AB\), \(DA\)\(BC\)

Gọi \(I\) \(=EC\)\(BC\)=> \(ABIE\)là hình bình hành

=> \(S_{IBE}=S_{ABE}=1\)Đặt\(S_{ICD}=x< 1\)

=> SIBC = SBCD - SICD = 1-x = SECD - SICD = SIED

Lại có: \(\orbr{\begin{cases}S_{ICD}=IC=S_{IBC}\\S_{IDE}=IE=S_{IBE}\end{cases}}\)Hay \(\orbr{\begin{cases}x\\1-x\end{cases}}\)\(=\orbr{\begin{cases}1-x\\1\end{cases}}\)

=> x2-3x+ 1 = 0 => x =\(\frac{3+5}{2}\)Do x<1 => x=\(\frac{3-5}{2}\)

Vậy \(S_{IBE}=\frac{5-1}{2}\)

Do đó SABCDE = SEAB + SEBI + SBCD + SIED

\(=3+\frac{5-1}{2}=\frac{5+5}{2}=5\)

 

14 tháng 12 2018

Chứng minh: Các tam giác DDAE, DDBC, DCED, DCAB, DBEA bằng nhau rồi dựa vào tính chất đường trung bình suy ra các cạnh của ngũ giác MNPQR bằng nhau.

Chứng minh DDPN, DCNM, DBMR, DAQR, DQQP bằng nhau và dựa vào góc  P D N ^  = 1080, từ đó suy ra các góc ngũ giác MNPQR bằng nhau và cùng bằng 1080.

1 tháng 1 2018

xét hình ngũ giác ta thấy có tất cả là 5 đường chéo mà theo như đề bài đã cho thì mỗi đường chéo cắt ra khỏi một tam giác có diện tích bằng 1.

=> có tất cả 5 hình tam giác được cắt ra.

diện tích hình ngũ giác:

S=S1+S2+S3+S4+S5=1+1+1+1+1=5

( S1...5là tam giác 1.....tam giác 5 0

1 tháng 1 2018

Bạn ơi, hình như bạn làm sai rồi.

Nhưng cảm ơn vì đã giúp.=)