Chứng tỏ:A=n3 +17n chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ủa cái này có gì đâu:vv
Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)
Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)
-> Đpcm
\(n^3+17n=n^3-n+18n=n\left(n-1\right)\left(n+1\right)+18n\)
Dễ thấy: \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)⋮3!=6\\18n⋮6\end{matrix}\right.\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)+18n⋮6\) hay \(n^3+17n⋮6\left(đpcm\right)\).
*Lưu ý: Ở đây ta sử dụng tính chất: "Trong n số tự nhiên liên tiếp luôn tồn tại duy nhất 1 số chia hết cho n".
Trong 3 số n,n-1.n+1 có 1 số chia hết cho 2 và có 1 số chia hết cho 3. Do đó tích 3 số này sẽ chia hết cho 6.
Giả sử n = 1 , ta có:
A= 13 - 1.17
= 1 - 17 = -16
Không chia hết cho 6
Trần Long Tăng
Ta có :
\(n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n^2-1\right)+12n\)
\(=\left(n-1\right)\left(n-1\right)n+12n\)
Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .
Mà 12n chia hết cho 6 .
\(\Rightarrow n^3+11n\)chia hết cho 6 .
Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức
Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{58}.13=13\left(3+3^4+...+3^{58}\right)⋮13\)
n chia hết cho 3 \(\Rightarrow\)n^3 nà n^2 chia hết cho 9
Mà 3 chia 9 dư 3 \(\Rightarrow\)A chia 9 dư 3
\(\Rightarrow\)A không chia hết cho 9(đpcm)
a) Gọi 3 số tự nhiên liên tiếp là
- Nếu ( thỏa mãn ). Nếu thì
- Nếu thì
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy là 3 số tự nhiên liên tiếp. Mà không chia hết cho 3, nên trong 2 số còn lại 1 số phải
Do vậy:
\(B=n^3+17n=n\left(n+17\right)\)
Tích của 2 số cách nhau 17 đơn vị thì chia hết cho 6. Vậy B chia hết cho 6.