\(\bigtriangleup{ABC}\) , \(\widehat{A} = 120^0, \widehat{B} = 35^0 , AB = 12 , 25 dm \) . Giải \(\bigtriangleup{ABC}\) ( làm tròn đến chữ số thập phân số hai )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A^=3E^,B^=2F^
Mà t/g ABC=t/g DEF\(\Rightarrow\)B^=E^(2 góc tương ứng)
Mà A^=3E^ hay A^=3B^ mà B^=2F^
Hay A^=3*2F^=6F^
Mà Mà t/g ABC=t/g DEF\(\Rightarrow\)C^=F^
Hay A^=6C^,B=2C^
Xét t/g ABC có:A^+B^+C^=180(tổng 3 góc trong tam giác)
Hay 6C^+2C^+C^=180
9C^=180
C^=20
\(\Rightarrow\)A^=20.6=120
Vậy góc A =120 độ
Xét ΔABC vuông tại A có
\(AB=BC\cdot\cos30^0=4\sqrt{3}\simeq6,928\left(cm\right)\)
Mình không làm đại, giúp bạn hình nhé :)
a) \(\Delta ABC\perp A\Rightarrow\widehat{A}=90^0\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=30^0\)
Có \(\widehat{C}< \widehat{B}< \widehat{A}\Rightarrow AB< AC< BC\)
b) Xét \(\Delta\) vuông BAD và tam giác vuông BKD có:
\(\widehat{KBD}=\widehat{DBA}\)
BD chung
\(\Rightarrow\Delta BAD=\Delta BKD\) (cạnh huyền- góc nhọn)
Vậy................
c) Ở câu a ta tính được \(\widehat{C}=30^0\)
Ta có BD là pg góc B \(\Rightarrow\widehat{CBD}=\dfrac{60^0}{2}=30^0\)
Ta thấy \(\widehat{C}=\widehat{CBD}=30^0\)
\(\Rightarrow\Delta BDC\) cân tại D
Ta lại có tính chất đường cao trong tam giác cân thì đồng thời là trung tuyến
\(\Rightarrow BK=CK\)
=> K là trung điểm của BC
a) Trong tam giác vuông BCH, ta có:
CH=BC.sinB^=12.sin60≈10,392 (cm)
Trong tam giác vuông ABC, ta có:
\(A\)=180−(60+40)=80
Trong tam giác vuông ACH, ta có:
\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)
b) Kẻ AK⊥BCAK⊥BC
Trong tam giác vuông ACK, ta có:
AK=AC.sinC≈10,552.sin40=6,783 (cm)
Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)
Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(\widehat{BAD}=\widehat{BHD}=90^o\left(gt\right)\)
BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta HBD\left(CH-GN\right)\)
Ta có : \(\widehat{C} = 180^0 - (120^0+35^0) = 25^0 \)
Vẽ AH \(\perp BC\) . Vì các góc B và C nhọn nên H nằm giữa B và C
AH = \(AB . sinB\) = AC . sinC
\(\Rightarrow\) AC = \(\dfrac{AB.sinB}{sinC} = \dfrac{12,25.sin35^0}{sin25^0}\) \(\approx 16,63 (dm )\)
BC = BH + CH = AB . cos35\(^0\) + AC = . cos25\(^0\)
\(\approx \) 10,035 +15,069
\(\approx \) 25,10 (dm)