K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Đáp án C

Nhận xét, với x  ∈ [1;2] thì f(x) = x - log2x  ≤ 0. Thật vậy, xét  f ' ( x )   =   x ln 2   -   1 x ln 2

Từ đây suy ra

Mặt khác cũng có

với [1;2]

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

12 tháng 2 2022

giúp mình câu hỏi này với ah.

27 tháng 4 2018

8 tháng 2 2019

Đáp án C

Nhận xét, với x ∈ 1 ; 2  thì f x = x − log 2 x ≤ 0 . Thật vậy, xét  f ' x = x ln 2 − 1 x ln 2

→ f ' x = 0 ⇔ x = 1 ln 2 ⇒ max 1 ; 2 f x = max f 1 , f 1 ln 2 , f 2 = 0

Từ đây suy ra x − 1 ≤ log 2 x ⇒ log 2 3 x ≥ x − 1 3  với  1 ; 2 ⇒ 1 ≥ a − 1 3 + b − 1 3 + c − 1 3

Mặt khác cũng có x 3 − 3 x log 2 x ≤ x 3 − 3 x 1 − x = x 3 − 3 x 2 + 3 x  với  1 ; 2

⇒ P − 3 ≤ x − 1 3 + y − 1 3 + z − 1 3 = 1 ⇒ P ≤ 4

31 tháng 5 2019

Đáp án C.

Đặt log 2 a = x log 2 b = y log 2 c = z ⇒ a = 2 x b = 2 y c = 2 z ⇒ P = 2 x 3 + 2 y 3 + 2 z 3 − 3 x .2 x + y .2 y + z .2 z ,

trong đó x 3 + y 3 + z 3 ≤ 1   và x , y , z ∈ 0 ; 1 .  

Dễ chứng minh được 2 x ≤ x + 1 ,    ∀ x ∈ 0 ; 1 . Dấu “=” xảy ra ⇔ x = 0 ∨ x = 1 .

Suy ra

2 x − x 3 ≤ 1 ⇔ 2 x 3 ≤ 3. 2 x 2 . x − 3.2 x . x 2 + x 3 + 1 ⇒ 2 x 3 − 3 x .2 x ≤ 3 x .2 x 2 x − x − 1 + x 3 + 1 ≤ x 3 + 1 Từ đó suy ra P ≤ x 3 + 1 + y 3 + 1 + z 3 + 1 ≤ 4 .

Dấu bằng xảy ra khi trong ba số x , y , z  có 1 số bằng 1 và hai số còn lại bằng 0. Do đó chọn C.   

12 tháng 2 2022

Giúp mình bài này với ah.

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$a^3+a^3+1\geq 3a^2$

$b^3+b^3+1\geq 3b^2$

$c^3+c^3+1\geq 3c^2$

$\Rightarrow 2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)$

$\Leftrightarrow 2P+3\geq 9$

$\Leftrightarrow P\geq 3$

Vậy $P_{\min}=3$ khi $(a,b,c)=(1,1,1)$

----------------

Tìm max:

$a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2\leq 3$

$\Rightarrow a,b,c\leq \sqrt{3}$

Do đó: $a^3-\sqrt{3}a^2=a^2(a-\sqrt{3})\leq 0$

$\Rightarrow a^3\leq \sqrt{3}a^2$

Tương tự với $b,c$ và cộng theo vế:

$P\leq \sqrt{3}(a^2+b^2+c^2)=3\sqrt{3}$
Vậy $P_{\max}=3\sqrt{3}$ khi $(a,b,c)=(\sqrt{3},0,0)$ và hoán vị.