K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

\(=4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)

\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\) (1)

Đặt: \(x^2+60=t\)

\(4\left(t+17x\right)\left(t+16x\right)-3x^2\)

\(=4t^2+132tx+1085x^2\)

\(=\left(4t^2+70xt\right)+\left(62xt+1085t^2\right)\)

\(=\left(2t+31x\right)\left(2t+35x\right)\)

\(=\left(2\left(x^2+60\right)+31x\right)\left(2\left(x^2+60\right)+35x\right)\)

\(=\left(2x+15\right)\left(2x+8\right)\)\(\left(2x^2+35x+120\right)\)

26 tháng 8 2019

có thiệt phát không biết làm không

17 tháng 4 2020

À thôi mik tự làm đc rồi ạ !

31 tháng 8 2021

a, `(x-9)^4=(x-9)^7`

`(x-9)^4-(x-9)^7=0`

`(x-9)^4 . [(1-(x-9)^3]=0`

TH1: `(x-9)^4=0`

`x-9=0`

`x=9`

TH2: `1-(x-9)^3=0`

`(x-9)^3=1^3`

`x-9=1`

`x=10`

b, `(3x-15)^10=(3x-15)^15`

`(3x-15)^10 . [1-(3x-15)^5]=0`

TH1: `(3x-15)^10=0`

`3x-15=0`

`x=5`

TH2: `1-(3x-15)^5=0`

`(3x-15)^5=1^5`

`3x-15=1`

`x=16/3` (Loại)

c, `(x-8)^3=(x-8)^6`

`(x-8)^3 .[1-(x-8)^3]=0`

TH1: `(x-8)^3=0`

`x=8`

TH2: `1-(x-8)^3=0`

`x-8=1`

`x=9`

31 tháng 8 2021

\(a,\left(x-9\right)^4=\left(x-9\right)^7\)

\(\Rightarrow\left(x-9\right)=\left(x-9\right)^2\)

\(\Rightarrow\left(x-9\right)^3\)

\(\Rightarrow x=9\)

31 tháng 10 2016

Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha 

f(x)=3x3 – 7x2 + 17x–5f(x)

Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không  có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là  3x–13x–1. Nên
f(x)= 3x– 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)

= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5

= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
 

31 tháng 10 2016

ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7

2 tháng 8 2016

~~~~~e)~~~~~

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=v\)

Ta có: \(v.\left(v+1\right)-12\)

\(=v^2+v-12\)

\(=v^2-3v+4v-12\)

\(=v\left(v-3\right)+4\left(v-3\right)\)

\(=\left(v-3\right)\left(v+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

~~~~~g)~~~~~

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(nhân cái đầu vs cái cuối, hai cái giữa nhân vs nhau)

Đặt \(x^2+5x+5=t\)

Ta có: \(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

~~~~~h)~~~~~

\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)

Đặt \(x^2+2x+1=n\)

Ta có: \(\left(n-x\right)\left(n+x\right)+x^2\)

\(=n^2-x^2+x^2\)

\(=n^2\)

\(=\left(x^2+2x+1\right)^2\)

\(=\left(\left(x+1\right)^2\right)^2\)

\(=\left(x+1\right)^4\)

~~~~~~~~~~~~~~~~~~~~

(Mong là mình làm đúng, chúc you học tốt nha, tíck cho mìk với nhé!)

2 tháng 10 2017

a) Đặt \(x^2+3x+1=y\) khi đó ta có:

\(y\left(y-4\right)-5\)

\(=y^2-4y-5\)

\(=y\left(y-5\right)+\left(y-5\right)\)

\(=\left(y+1\right)\left(y-5\right)\)

Thay \(y=x^2+3x+1\):

\(\left(x^2+3x+1+1\right)\left(x^2+3x+1-5\right)\)

\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)

\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)

\(=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x+4\right)\)

b) Biến đổi 3 số sau có chứa x2 + 2x rồi đặt ẩn.

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=y'\)

Khi đó ta đc:

\(y'\left(y'+8\right)+15\)

\(=\left(y'\right)^2+8y'+15\)

\(=y'\left(y'+3\right)+5\left(y'+3\right)\)

\(=\left(y'+5\right)\left(y'+3\right)\)

....

d) \(x^2-2xy+y^2-7x+7y+12\)

Biến đổi chứa x - y rồi đặt ẩn.

2 tháng 10 2017

Đỗ thị như quỳnh: làm tương tự thôi mà, nếu bạn ko hiểu chỗ nào thì nói đi :)

NV
1 tháng 3 2019

a/ ĐKXĐ: \(x^2+5x+2\ge0\Rightarrow x...\left(casio\right)\)

\(x^2+5x-2-3\sqrt{x^2+5x+2}=0\)

Đặt \(\sqrt{x^2+5x+2}=a\ge0\)

\(\Rightarrow a^4-4-3a=0\Rightarrow\left[{}\begin{matrix}a=-1< 0\left(l\right)\\a=4\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+2}=4\Leftrightarrow x^2+5x-14=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)

b/ \(x^2-6x+9+3x-22-\sqrt{x^2-3x+7}=0\)

\(\Leftrightarrow x^2-3x+7-\sqrt{x^2-3x+7}-20=0\)

Đặt \(\sqrt{x^2-3x+7}=a>0\)

\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-3x+7}=5\Leftrightarrow x^2-3x-18=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

c/ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)

\(x^2+3x+2-\sqrt{x^2+3x+2}-6=0\)

Đặt \(\sqrt{x^2+3x+2}=a\ge0\)

\(a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2< 0\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+3x+2}=3\Leftrightarrow x^2+3x-7=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{37}}{2}\\x=\dfrac{-3-\sqrt{37}}{2}\end{matrix}\right.\)

1 tháng 9 2021

giúp mik mik đang cần gấp

nhưng phả có lời giải đừng cho mỗi đáp án

 

a:Ta có: \(\left(x-9\right)^7=\left(x-9\right)^4\)

\(\Leftrightarrow\left(x-9\right)^4\cdot\left[\left(x-9\right)^3-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-9=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=10\end{matrix}\right.\)

b: ta có: \(\left(3x-15\right)^{15}=\left(3x-15\right)^{10}\)

\(\Leftrightarrow\left(3x-15\right)^{10}\cdot\left[\left(3x-15\right)^5-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-15=0\\3x-15=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{16}{3}\end{matrix}\right.\)

16 tháng 9 2018

T ko biết làm, chỉ hỏi liên thiên thôi :)))

Hủ phải không???? OvO Dưa Trong Cúc

16 tháng 9 2018

- Ko lẽ t có đồg bọn =))

31 tháng 8 2021

a) \(\left(x-9\right)^4=\left(x-9\right)^7\)

\(\Rightarrow\left[{}\begin{matrix}x-9=1\\x-9=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=10\\x=9\end{matrix}\right.\)

b) \(\left(3x-15\right)^{10}=\left(3x-15\right)^{15}\)

\(\Rightarrow\left[{}\begin{matrix}3x-15=0\\3x-15=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{3}\\x=\dfrac{16}{3}\end{matrix}\right.\)

c) \(\left(x-8\right)^3=\left(x-8\right)^6\)

\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x-8=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=8\\x=9\end{matrix}\right.\)