Cho góc xAy = 60 độ , Điểm B di động trên Ax , điểm C nằm đi động trên Ay sao cho BC = 5cm. Hãy xác định vị trí các điểm B và C Để tổng AB+AC lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao BH
diện tích tam giác ABC là \(\frac{1}{2}BH.AC=\frac{1}{2}ABsin\widehat{A}.\left(6-AB\right)\le\frac{9}{2}sin\widehat{A}\) vì AB(6-AB)= 6AB-AB2 = 9- (AB-3)2 \(\le9\)
vậy diện tích ABC lớn nhất khi AB-3=0 hay AB=AC =3
a, có AM = 2AC mà để AM lớn nhất
<=> AC lớn nhất
có AC là dây cung của đường tròn (O) đk AB
=> AC =< AB
dấu = xảy ra khi C trùng B
b, AM = 2R.căn 3 mà AM = 2AC
<=> 2AC = 2R.căn 3
<=> AC = R.căn 3
xét tam giác ABC vuông tại C => AC^2 + CB^2 = AB^2
Mà BA = 2R
=> (R.căn 3)^2 + BC^2 = (2R)^2
<=> 3R^2 + BC^2 = 4R^2
<=> BC^2 = R^2
<=> BC = R
vậy lấy điểm C trên (O) sao cho BC = R để AM = 2R.căn 3
c, xét tam giác BAM có BC là đường trung tuyến đồng thời là đường cao
=> tam giác BAM cân tại B
=> BA = BM mà AB không đổi
=> BM không đổi
=> khi C di động trên (O) thì M di động trên đường tròn (B) cố định
Vẽ đường trung trực của AB cắt Az, Ax lần lượt tại M,H
Ta có \(\widehat{DAM}=\widehat{MAB}\)(Az là tia phân giác của góc xAy)
Mà \(\widehat{MBA}=\widehat{MAB}\)(do MH là trung trực của AB)
\(\Rightarrow\widehat{DAM}=\widehat{MBA}\)
Xét \(\Delta ADM\)và \(\Delta BCM\)có:
AD = BC (gt)
\(\widehat{DAM}=\widehat{CBM}\)(cmt)
AM = BM (do MH là trung trực của AB))
Do đó \(\Delta ADM=\Delta BCM\left(c-g-c\right)\)
\(\Rightarrow DM=CM\)(hai cạnh tương ứng)
Khi đó M thuộc đường trung trực của CD
Vậy đường trung trực của CD luôn đi qua một điểm cố định M khi C và D chuyển động (đpcm)