Không tính , hãy chứng tỏ :
a, số 171717 luôn chia hết cho 17
b,aa chia hết cho 11
c,ab+ba chia hết cho 11
các bn giúp mk nha#####
Hiện tại mk đang cs lập một team Ong
thì các bn cs bn nào cs nhu cầu vào team thì ns vs mk
thanks very much
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì số 17x10101=171717.
Nên 171717 luôn chia hết cho 17.
b) Vì số 11 nhân với số nào có một chữ số thì cũng được số có hai chữ số giống nhau mà aa là sô có hai chữ số giống nhau .
Nên aa chia hết cho 11.
c) Giống như bài b số có hai chữ số giống nhau thì chia hêt cho 11. Mà ab+ba cũng bằng số có hai chữ số giống nhau.
Nên ab+ba chia hết cho 11.
1, 171717 = 17.101010 chia hết cho 17
2, aa = a.11 chia hết cho 11
3, ab + ba = 10a+b+10b+a = 11a+11b = 11(a+b) chia hết cho 11
a)
171717=17.10101 luôn chia hết cho 17
Vậy 171717 luôn chia hết cho 17
b)
aa=a.11 luôn chia hết cho 11
Vậy aa luôn chia hết cho 11
a.Co 171717=170000+1700+17 ma 170000 chia het cho 17; 1700 va 17 cung chia het cho 17 => 171717 luon chia het cho 17 b.so aa= a0+a=ax10+ax1=a x (10+1)= ax11 chia het cho 11
~~~Ủa bn j đó ơi, mk đăng nhiều đâu liên quan gì đến bạn đâu nhỉ, bạn giúp mình thì mình xin cảm ơn nhưng mong bn lần sau đừng nói vậy~~~
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
Bn mở sách b.tập toán ra.Phần giải ý,bài 10:tính chất chia hết cr 1 toorbng.bn xem đề cr bài rồi lật ra phần giải xem họ giải nha!
Bài này mình hc bồi dưỡng nên ko có trong SGK bn ak.
bùn ghê.
Trả lời
a)Số 171717 luôn chia hết cho 17, vì:
17.10101=171717
Trong tích có số 17 thì tích đó chia hết cho 17.
b)aa chia hết cho 11, vì:
a.11=aa.
a) Ta có 171717 = 170 000 + 1700 + 17
= 17 x 10000 + 17 x 100 + 17
= 17 x (10 000 + 100 + 1)
= 17 x 10 101 \(⋮\)17
=> 171717 \(⋮\)17 (đpcm)
b) Ta có : aa = a x 11 \(⋮\)11
=> aa \(⋮\)11 (đpcm)
c) Ta có : ab + ba = a0 + b + b0 + a
= 10 x a + b + 10 x b + a
= (10 x a + a) + (10 x b + b)
= 11 x a + 11 x b
= 11 x (a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (đpcm)