Cho hình thang ABCD với AB là đáy nhỏ Gọi I K L M lần lượt là trung điểm của BC AC BD và AD chứng minh I,K,L,M thẳng hàng ,tứ giác ABKL là hình chữ nhật thì tứ giác ABCD có tính chất gì đặc biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK
a: Xét ΔABD có
E là trung điểm của AB
F là trung điểm của AD
Do đó: EF là đường trung bình
=>EF//DB
hay EFDB là hình thang
mà \(\widehat{FDB}=\widehat{EBD}\)
nên EFDB là hình thang cân
b: Ta có: ΔAEF cân tại A
mà AI là đường trung tuyến
nên AI là phân giác của góc EAF
hay AI là phân giác của góc PAQ
Xét tứ giác APIQ có
\(\widehat{API}=\widehat{AQI}=\widehat{QAP}=90^0\)
Do đó: APIQ là hình chữ nhật
mà AI là tia phân giác của góc PAQ
nên APIQ là hình vuông
Hình:
Giải:
a) Ta có:
\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)
Nên tứ giác BMCO là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)
Tương tự, tứ giác OCND là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)
Suy ra tứ giác BMND là hình bình hành
b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD
Đồng thời BM//AC
Nên AC⊥BD
c) Vì BMCO là hình bình hành nên MC//BD (3)
Và BMND là hình bình hành nên MN//BD (4)
Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)
Vậy ...
Mình không tìm thấy ảnh có điểm I,K,L,M nên làm theo điểm như bài này nhé bạn
Xét tam giác ABC có:
\(\frac{CF}{BF}=\frac{CI}{CA}=\frac{1}{2}\)nên IF là đtb của tam giác ABC hay IF//AB//DC(1)
Xét tam giác BDC có
\(\frac{BK}{BD}=\frac{BF}{BC}=\frac{1}{2}\)nên KF là đtb của tam giác BDC hay KF//AB//DC(2)
Từ (1) và (2) ta có :
Theo tiên đề Ơ-clit thì qua điểm F chỉ có 1 đường thẳng song song với AB ( hoặc CD)
Nên KF và IF là 1 hay K,F,I thẳng hàng
Tương tự bạn chứng minh E,K,I thẳng hàng
EK là đtb của tam giá ABD nên EK //AB
EI là đtb của tam giác ADC nên EI // AB//DC
Rồi suy ra K,F,I và E,K,I đều thẳng hàng với nhau hay E,K,F,I thẳng hàng ( I,K,L,M thẳng hàng)
Nếu ABKL là hình chữ nhật thì
\(AL=BK\Rightarrow\hept{\begin{cases}AL=\frac{1}{2}AC\\BK=\frac{1}{2}BD\end{cases}}\)
Nên AC = BD hay tứ giác ABCD có hai đường chéo bằng nhau