K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

Mình không tìm thấy ảnh có điểm I,K,L,M nên làm theo điểm như bài này nhé bạn 

Xét tam giác ABC có:

\(\frac{CF}{BF}=\frac{CI}{CA}=\frac{1}{2}\)nên IF là đtb của tam giác ABC hay IF//AB//DC(1)

Xét tam giác BDC có

\(\frac{BK}{BD}=\frac{BF}{BC}=\frac{1}{2}\)nên KF là đtb của tam giác BDC hay KF//AB//DC(2)

Từ (1) và (2)  ta có : 

Theo tiên đề Ơ-clit thì qua điểm F chỉ có 1 đường thẳng song song với AB ( hoặc CD)

Nên KF và IF là 1 hay K,F,I thẳng hàng

Tương tự bạn chứng minh E,K,I thẳng hàng 

EK là đtb của tam giá ABD nên EK //AB

EI là đtb của tam giác ADC nên EI // AB//DC

Rồi suy ra K,F,I và E,K,I đều thẳng hàng với nhau hay E,K,F,I thẳng hàng ( I,K,L,M thẳng hàng)

Nếu ABKL  là hình chữ nhật thì 

\(AL=BK\Rightarrow\hept{\begin{cases}AL=\frac{1}{2}AC\\BK=\frac{1}{2}BD\end{cases}}\)

Nên AC = BD hay tứ giác ABCD có hai đường chéo bằng nhau 

13 tháng 10 2021

 

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

11 tháng 11 2018

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE,  MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)

11 tháng 11 2018

1)      a.   xét trong tam giác ABC có

           I trung điểm AB và K trung điểm AC  =>IK là đường trung bình của tam giác ABC=>IK song song với BC

            vậy BCKI là hình thang (vì có hai cạng đáy song song)

          b.

            IK  // và =1/2BC   (cm ở câu a)   =>IK song  song NM

            M trung điểm HC  và N trung điểm HB  mà HB+HC=CB =>MN=IK=1/2BC

            suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

a: Xét ΔABD có

E là trung điểm của AB

F là trung điểm của AD

Do đó: EF là đường trung bình

=>EF//DB

hay EFDB là hình thang

mà \(\widehat{FDB}=\widehat{EBD}\)

nên EFDB là hình thang cân

b: Ta có: ΔAEF cân tại A

mà AI là đường trung tuyến

nên AI là phân giác của góc EAF

hay AI là phân giác của góc PAQ

Xét tứ giác APIQ có 

\(\widehat{API}=\widehat{AQI}=\widehat{QAP}=90^0\)

Do đó: APIQ là hình chữ nhật

mà AI là tia phân giác của góc PAQ

nên APIQ là hình vuông

11 tháng 6 2018

Hình:

Ôn tập cuối năm phần số học

Giải:

a) Ta có:

\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)

Nên tứ giác BMCO là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)

Tương tự, tứ giác OCND là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)

Suy ra tứ giác BMND là hình bình hành

b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD

Đồng thời BM//AC

Nên AC⊥BD

c) Vì BMCO là hình bình hành nên MC//BD (3)

Và BMND là hình bình hành nên MN//BD (4)

Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)

Vậy ...