Tim x
\(\frac{x-5}{5x-1}=\frac{y}{3}=\frac{4x-10}{20x+4}\)
\(\frac{5}{y}=\frac{3}{x}\)và y mũ 2 + x mũ 2 = 125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x^2.y^2=162
ta có \(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\)=>\(\frac{x^2}{4}=\frac{y^2}{1}=\frac{z^2}{9}\)
=>\(\frac{x^2}{4}.\frac{y^2}{1}=\frac{z^4}{81}\)còn lại do đề sai :))
a,Ta có : \(\frac{x}{x}=\frac{4y}{7}\) => \(1=\frac{4y}{7}\)=> \(2x=\frac{4y}{7}\)=> 14x = 4y => 7x = 2y => \(\frac{x}{2}=\frac{y}{7}\)=> \(\frac{2x}{4}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{7}=\frac{2x-y}{4-7}=\frac{3}{-3}=-1\)
=> \(\hept{\begin{cases}\frac{2x}{4}=-1\\\frac{y}{7}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-4\\y=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-7\end{cases}}\)
b, \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2-y^2}{16-9}=\frac{36}{7}\)
=> Từ đó suy ra x,y không thỏa mãn điều kiện
a. \(\frac{x}{x}=\frac{4y}{7}\)=> 4y = 7 => y = \(\frac{7}{4}\)
2x - y = 3 => 2x = \(\frac{19}{4}\) => x = \(\frac{19}{8}\)
b. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{x^2-y^2}{4^2-3^2}=\frac{36}{7}\)
=> x,y \(\in\varnothing\)
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
Mình chỉ hướng dẫn giải thôi nhá chứ nhiều bài quá
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)
Thay x.y=315 => 5k.7k=315 <=> 35k2=315 => k2=9 => k=3
x=5.3=15 ; y=7.3=21
b) 5x=9y<=> \(\frac{x}{9}=\frac{y}{5}\)
Theo TCDTSBN ta có : \(\frac{x}{9}=\frac{y}{5}=\frac{2x+3y}{2.9+3.5}=\frac{-33}{33}=-1\)
x/9=-1=>x=-9 ; y/5=-1=>y=-5
các bài còn lại tương tự b
Ta có : \(\frac{x-5}{5x-1}=\frac{4x-10}{20x+4}\)
=> \(\frac{x-5}{5x-1}=\frac{2x-5}{10x+2}\)
=> (x - 5)(10x + 2) = (2x - 5)(5x - 1)
=> 10x2 + 2x - 50x - 10 = 10x2 - 2x - 25x + 5
=> 10x2 - 48x - 10x2 + 27x = 5 + 10
=> -21x = 15
=> x = 15 : (-21) = -5/7
Thay x = -5/7 vào \(\frac{x-5}{5x-1}=\frac{y}{3}\)
=> \(\frac{-\frac{5}{7}-5}{5.\left(-\frac{5}{7}\right)-1}=\frac{y}{3}\)
=> \(\frac{-\frac{40}{7}}{-\frac{32}{7}}=\frac{y}{3}\)
=> \(\frac{5}{4}=\frac{y}{3}\)
=> 4y = 15
=> y = 15/4
Vậy ...
Ta có: \(\frac{5}{y}=\frac{3}{x}\) => \(\frac{x}{3}=\frac{y}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{25}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{25}=\frac{y^2+x^2}{25+9}=\frac{125}{34}\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=\frac{125}{34}\\\frac{y^2}{25}=\frac{125}{34}\end{cases}}\) => \(\hept{\begin{cases}x^2=\frac{125}{34}.9=\frac{1125}{34}\\y^2=\frac{125}{34}.25=\frac{3125}{34}\end{cases}}\) => \(\hept{\begin{cases}x=\pm\frac{15\sqrt{170}}{34}\\y=\pm\frac{25\sqrt{170}}{34}\end{cases}}\)