K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

\(J=\frac{2010}{4x+20\sqrt{x}+30}\)

\(=\frac{2010}{\left(2\sqrt{x}\right)^2+2.2\sqrt{x}.5+25+5}\)

\(=\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)

\(A_{max}\Leftrightarrow\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)lớn nhất

\(\Rightarrow\left(2\sqrt{x}+5\right)^2+5\)nhỏ  nhất

\(\Rightarrow\left(2\sqrt{x}+5\right)^2\)nhỏ nhất 

Mà \(2\sqrt{x}+5\ge5\Rightarrow2\sqrt{x}+5=5\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\)

Với x = 0 \(\Rightarrow J_{max}=\frac{2010}{4.0+20\sqrt{0}+30}=\frac{2010}{30}=67\)

19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1

18 tháng 11 2017

ta có :  (\(\sqrt{x}\)-   2   )\(^2\)\(\ge\)0

\(\Leftrightarrow\)x  -  4\(\sqrt{x}\)+  4  \(\ge\)0

\(\Leftrightarrow\)x  -  4\(\sqrt{x}\)+  4 +   8\(\sqrt{x}\) \(\ge\)8\(\sqrt{x}\)

   \(\Leftrightarrow\)(\(\sqrt{x}\)+    2  )\(^2\)\(\ge\)8\(\sqrt{x}\)

\(\Leftrightarrow\)-(\(\sqrt{x}\)+    2  )\(^2\)\(\le\)-8\(\sqrt{x}\)

\(\Leftrightarrow\)Q  \(\le\)\(\frac{-8\sqrt{x}}{\sqrt{x}}\)=   (   -  8  )

Dấu ''   =   ''   xaye ra tại   x =  4

NV
9 tháng 4 2019

GTLN và GTNN của biểu thức này đều ko tồn tại

D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)

D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))

18 tháng 3 2019

\(x\ge2017\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2017}\ge0\\x\ge2017\end{matrix}\right.\)\(\Rightarrow MaxP=0\)

dấu"=" xảy ra khi x=2017

28 tháng 3 2019

sai roi ban. dap an la \(\frac{1}{2\sqrt{2017}}\)

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

4 tháng 7 2015

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)