cho tam giác abc cân tại a với các đường phân giác bd và ce
a) chứng minh tam giác abd =tam giác ace
b)chứng minh be = ed = dc
c)biết góc a = 50 độ tính các góc của tứ giác bedc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)
A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E
CÓ; AB=AC (ΔABC CÂN TẠI A)
\(\widehat{BAC}\) : GÓC CHUNG
⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)
Sửa lại đề nha
Cho tam giác ABC cân tại A
a) Vì \(\Delta ABC\)cân tại A
=> B = C và AB = AC
Vì \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
\(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) => \(\widehat{ABD}=\widehat{AED}\)
mà hai góc này ở vị trí đồng vị
=> ED // BC
mà \(\widehat{ABC}=\widehat{ACB}\)( \(\Delta ABC\)cân A )
=> Tứ giác BEDC là hình thang cân
b)
Vì ED // BC
=> \(\widehat{DEC}=\widehat{ECB}\)
mà góc \(\widehat{ECD}=\widehat{DCE}\)( CE là phân giác )
=> \(\widehat{DEC}=\widehat{DCE}\)
=> \(\Delta EDC\)cân
=> ED = DC
mà BE = DC ( tứ giác BEDC là hình thang cân )
=> BE = ED = DC
c )
Vì BD là phân giác của góc B
CE là phân giác của góc C
Mà BD giao CE tại I
=> I là trọng tâm \(\Delta ABC\)
=> AI là là đường trung trực
mà \(\Delta ABC\)cân A
=> AI là đường trung trực , phân giác ,trung tuyến đồng thời là đường cao
=> Ai là trung trực của DE và BC
d)
Vì \(\Delta ABC\)cân tại A
Mà góc A = 500
=> B = C = 650
=> DEB = EDC = 1150
Study well
Bạn Tham khảo nha
À chết
Phần a
chỗ từ ( 1 ) và ( 2 ) =>
thì phải là
\(\widehat{ABC}=\widehat{AED}\)nha mk làm nhầm sorry
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a: Xét ΔABC có
BD là đường phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{AC}{BC}\left(1\right)\)
Xét ΔACB có
CE là đường phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
hay ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
a) Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Vì BD là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Vì CE là phân giác ACB
=> ACE = BCE = \(\frac{1}{2}ACB\)
=> ABD = CBD = ACE = BCE
Xét ∆ABD và ∆ACE có :
ABD = ACE (cmt)
A chung
AB = AC (cmt)
=> ∆ABD = ∆ACE (g.c.g)
b) Vì ∆ABD = ∆ACE (cmt)
=> AE = AD
=> ∆ADE cân tại A
=> AED = \(\frac{180°-A}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°-A}{2}\)
=> ABC = ADE
Mà 2 góc này ở vị trí đồng vị
=> ED//BC
=> EDCB là hình thang
Mà ABC = ACB (cmt)
=> EDCB là hình thang cân
=> EB = DC
Vì ED//BC
=> DEC = ECB ( so le trong)
Mà ACE = BCE (CE là phân giác)
=> DEC = ACE
=> ∆DEC cân tại D
=> ED = DC
Mà EB = DC (cmt)
=> ED = EB = DC
c) Vì ABC = \(\frac{180°-A}{2}=\:\frac{180°-50°}{2}\)= 65°
Vì EDCB là hình thang cân
=> EBC = DCB = 65°
Mà ED//BC
=> DEB + EBC = 180° ( trong cùng phía)
=> DEB = 180° - 65° = 115°
Mà EDCB là hình thang cân
=> DEB = EDC = 115°