- Cho hàm số f(x) = 10x
a) Tính f(0), f(-1) , f\(\left(\frac{1}{2}\right)\)
b) chứng minh rằng f( a+b ) = f(a) + f(b)
c) Tìm x sao cho f(x) = x2
2. Tìm tập xác định của hàm số sau:
a) y = 2x - 3 ; b) y = \(\frac{1}{2-x}\); c) y = \(\frac{3}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
Bài 1: Cho hàm số Y= f(x)=k.x ( k là hằng số , k khác 0). Chứng minh rằng:
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)
và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))
* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)
* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)
c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:
+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)
+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)
+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)
Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên
d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\); \(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)
f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)
Vậy x = 0 thì f(x) = f(2x)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
a/ Thay x =0 vào hàm số f(x) = 2x2 - 10 ta có
f(0) = 2 . 0 - 10 = -10
Thay x = 1 vào hàm số f(x) = 2x2 - 10 ta có
f(1) = 2 . 12 - 10 = 2 - 10 = -8
Thay \(x=-1\dfrac{1}{2}=-\dfrac{3}{2}\)vào hàm số f(x) ta có
\(f\left(-1\dfrac{1}{2}\right)=2.\left(-\dfrac{3}{2}\right)^2-10=\dfrac{9}{2}-\dfrac{20}{2}=-\dfrac{11}{2}\)
b/ f(x) = -2
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Mí bạn giúp mik vs chiều nay mình học rồi :(((
Bài 1:
\(a)f\left(x\right)=10x\)
\(\Leftrightarrow f\left(0\right)=10.0=0\)
\(\Leftrightarrow f\left(-1\right)=10\left(-1\right)=-10\)
\(\Leftrightarrow f\left(\frac{1}{2}\right)=\frac{10}{2}=5\)
\(b)\)Vì \(f\left(x\right)=10x\)
Nên: \(f\left(a+b\right)=10\left(a+b\right)\)
Và: \(f\left(a\right)+f\left(b\right)=10a+10b=10\left(a+b\right)\)
Do đó:
\(f\left(a+b\right)=f\left(a\right)+f\left(b\right)\left(đpcm\right)\)
\(c)\)Vì \(\hept{\begin{cases}f\left(x\right)=10x\\f\left(x\right)=x^2\end{cases}\Leftrightarrow x^2=10x}\)
\(\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x=0\\x=10\end{cases}}\)thì \(f\left(x\right)=x^2\)