Cho \(\frac{a^4}{x}+\frac{b^4}{y}=\frac{1}{x+y}\) và \(a^2+b^2=1\). CMR:
\(a)bx^2=ay^2\)
\(b)\) \(\frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{2000}}=\frac{2}{\left(a+b\right)^{1000}}\)
~các cậu giúp tớ nhé~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)
\(\Rightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)
Dấu "=" xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow \frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}=\left(\frac{x^2}{a}\right)^{1000}+\left(\frac{y^2}{b}\right)^{1000}\)
\(=\frac{1}{(a+b)^{1000}}+\frac{1}{(a+b)^{1000}}=\frac{2}{(a+b)^{1000}}\)
x2+y2=1
(x2+y2)2=1
x4+y4+2x2y2=1
thay vào bt ta dc
x4/a+y4/b=x4+y4+2x2y2/a+b
x4b/ab+y4a/ab=x4+y4+2x2y2/a+b
x4b+y4a/a+b=x4+y4+2x2y2/a+b
nhân chéo lên rồi rút gọn ta dc
(x2b-y2a)2=0
x2b=y2a
= \
= \
Cho + = \frac{1}{a+b} ; . CMR
a)
b) + =
Cho + = \frac{1}{a+b} ; . CMR
a)
b) + =
lưu ý chép kĩ nhé nguyenchieubao
ai k cho mk thì mk cho lại
a) Từ đề bài \(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\) \(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)-ab\left(x^2+y^2\right)^2=0\)
\(\Leftrightarrow b^2x^4-2abx^2y^2+a^2y^4=0\)
\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\) \(\Rightarrow bx^2=ay^2\) (ĐPCM)
b) Từ a \(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\) Áp dụng DTSBN ta có :
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\) hay \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2018}}{a^{1004}}=\frac{y^{2018}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\) \(\Rightarrow\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\) (ĐPCM)
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm
Với x, y khác 0
Ta có:
\(a^2+b^2=1\Leftrightarrow\left(a^2+b^2\right)^2=1\Leftrightarrow a^4+2a^2b^2+b^4=1\)
Từ bài ra ta suy ra:
\(\frac{a^4}{x}+\frac{b^4}{y}=\frac{a^4+2a^2b^2+b^4}{x+y}\)
<=> \(a^4\left(x+y\right)y+b^4\left(x+y\right)x=a^4xy+2a^2b^2xy+b^4xy\)
<=> \(a^4y^2+b^4x^2-2a^2y.b^2x=0\)
<=> \(\left(a^2y-b^2x\right)^2=0\)
<=> \(a^2y-b^2x=0\)
<=> \(a^2y=b^2x\)
Câu b em xem lại đề nhé: Thử \(a=b=\frac{1}{\sqrt{2}};x=y=1\)vào ko thỏa mãn