K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

a) xét ta giác AHM và tam giác ACH có

góc AMH =góc AHC=90o

AH cạnh chug

góc A chug

=> tam giác AHM= tam giác ACH

Bài 1 : Cho Δ ABC có 3 góc nhọn , AB = 2cm , AC = 4cm . Trên cạnh AC lấy điểm M sao cho \(\widehat{ABM}=\widehat{ACB}\) . a, Chứng minh : Δ ABM ∼ ΔACB b, Tính AM c, Từ A kẻ AH ⊥ BC , AK ⊥ BM . Chứng minh AB.AK=AM.AH d , chứng ming rằng : SAHB = 4SAKM Bài 2 : Cho Δ ABC vuông tại A , có \(\widehat{B}=\widehat{2C}\) , đường cao AD . a, Chứng minh : ΔADB ∼ ΔCAB b, Kẻ tia phân giác \(\widehat{ABC}\) cắt AD tại F và AC tại E . Chứng minh AB2 =...
Đọc tiếp

Bài 1 : Cho Δ ABC có 3 góc nhọn , AB = 2cm , AC = 4cm . Trên cạnh AC lấy điểm M sao cho \(\widehat{ABM}=\widehat{ACB}\) .

a, Chứng minh : Δ ABM ∼ ΔACB

b, Tính AM

c, Từ A kẻ AH ⊥ BC , AK ⊥ BM . Chứng minh AB.AK=AM.AH

d , chứng ming rằng : SAHB = 4SAKM

Bài 2 : Cho Δ ABC vuông tại A , có \(\widehat{B}=\widehat{2C}\) , đường cao AD .

a, Chứng minh : ΔADB ∼ ΔCAB

b, Kẻ tia phân giác \(\widehat{ABC}\) cắt AD tại F và AC tại E . Chứng minh AB2 = AE.AC

c, Chứng minh : \(\frac{DF}{FA}=\frac{AE}{EC}\)

d, Tính tỷ số diện tích của ΔBFC và ΔABC .

Bài 3 : Cho tam giác ABC vuông tại A , đường cao AH chia cạnh huyền BC thành hai đoạn BH = 9cm và CH =16cm .

a, Chứng minh : ΔABH ∼ ΔCAH ; Tính diện tích ΔABC

b, Gọi M , N lần lượt là trung điểm của AH và HC . Đường thẳng BM cắt AN tại K . Chứng minh : MK là đường cao của ΔAMN .

c, Gọi D là điểm đối xứng của C qua điểm A . Chứng minh : AB.DH= 2AD.BM

các bạn ơi ! giúp mình với đi !!!!!!!!!!!!!!!!!!!!

1
28 tháng 4 2019

Bài 1

A B C M H K 1 a, Xét ΔABM và ΔACB có

\(\left\{{}\begin{matrix}\widehat{BAC}\text{ chung}\\\widehat{ABM}=\widehat{C}\text{(gt)}\end{matrix}\right.\)

⇒ ΔABM ~ ΔACB (g.g)(đpcm)

b, Vì ΔABM ~ ΔACB

\(\frac{AB}{AC}=\frac{AM}{AB}\)

⇒ AB2 = AM . AC

⇒ AM = \(\frac{AB^2}{AC}=\frac{2^2}{4}=\frac{4}{4}=1\) (cm)

Vậy AM = 1cm

c, Vì ΔABM ~ ΔACB

\(\widehat{M_1}=\widehat{ABC}\)

\(\widehat{M_1}=\widehat{ABH}\)

Vì AH ⊥ BC ⇒ \(\widehat{AHB}=90^0\)

AK ⊥ BM ⇒ \(\widehat{AKM}=90^0\)

ΔAHB và ΔAKM có

\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{M_1}\\\widehat{AHB}=\widehat{AKM}=90^0\end{matrix}\right.\)

⇒ ΔAHB ~ ΔAKM (g.g)

\(\frac{AB}{AM}=\frac{AH}{AK}\)

⇒ AB . AK = AH . AM (đpcm)

d, Vì ΔABH ~ ΔAMK

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{AB}{AM}\right)^2\) (Tỉ số diện tích của 2 tam giác đồng dạng bằng bình phương tỉ số đồng dạng)

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{2}{1}\right)^2\)

\(\frac{\text{SΔABH}}{\text{SΔAMK}}=4\)

⇒ SΔABH = 4SΔAMK (đpcm)

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

19 tháng 1 2021

a, xét △ AMB và △ AMC có:

                AB=AC(gt)

                góc BAM=góc CAM (gt)

                AM chung

=> △ AMB= △ AMC(c.g.c)

b,xét △ AHM và △ AKM có:

                AM cạnh chung

                góc HAM=ˆgóc KAM (gt)

=>△ AHM= △ AKM(CH-GN)

=> AH=AK

c,gọi I là giao điểm của AM và HK

xét △ AIH và △ AIK có:

            AH=AK(theo câu b)

            góc AIH=ˆgóc AIK (gt)

            AI chung

=> △ AIH=△ AIK (c.g.c)

=> góc AIH=ˆgóc AIK 

mà góc AIH+góc AIK=180độ(2 góc kề bù)

=> HK ⊥ AM

19 tháng 1 2021

Cho 1000 like & 1000 ❤

19 tháng 11 2019

What grade are you in?

a) Xét \(\Delta AKB\)và \(\Delta AKC\)có:

          AB = AC (gt)

          AK là cạnh chung

          KB = KC (gt)

\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right)\)

b) Ta có:  \(\Delta AKB=\Delta AKC\)(theo a)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}\)(2 góc tương ứng)

Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp BC\)

c) Ta có: \(\hept{\begin{cases}EC\perp BC\\AK\perp BC\end{cases}\Rightarrow EC//AK}\)