chung minh cac bieu thuc sau khong phu thuoc vao bien
(x+y-z-t)2 - (z+t-x-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x+3)(4x^2-6x+9)-2(4x^3-1)
=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2
=29
\(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2\)
\(=\left(x+2\right)^2-\left(2x+4\right)\left(x-8\right)+\left(x-8\right)^2\)
\(=\left(x+2\right)^2-2x^2+16x-4x+32+\left(x-8\right)^2\)
\(=x^2+4x+4-2x^2+16x-4x+32+x^2-16x+64\)
\(=\left(x^2+x^2-2x^2\right)+\left(4x-4x\right)+\left(16x-16x\right)+4+32+64\)
\(=4+32+64=100\)
Ta có điều phải chứng minh
a) (x+2)2 -2(x+2)(x-8)+(x-8)2
=[ (x+2)-(x-8)]2
=(x+2-x+8)2
=102
= 100
VẬY GT CỦA BT KO PHỤ THUỘC VÀO BIẾN
`@` `\text {Ans}`
`\downarrow`
`a,`
\(125- (x + 1) ^ 2 + x ^ 2 - (- 2x + 3)\)
`= 125 - x^2 -2x - 1 + x^2 + 2x - 3`
`= (125 - 1 - 3) + (-x^2 + x^2) + (-2x+2x)`
`= 121`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
`b,`
\(150-(x-y)(x+y)+x^2-y^2\)
`= 150 - [ x(x+y) - y(x+y)] + x^2 - y^2`
`= 150 - (x^2 + xy - xy - y^2) + x^2 - y^2`
`= 150 - (x^2 - y^2) + x^2 - y^2`
`= 150 - x^2 + y^2 + x^2 - y^2`
`= 150`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
\(a,125-\left(x+1\right)^2+x^2-\left(-2x+3\right)\\ =125-x^2-2x-1+x^2+2x-3\)
\(=\left(-x^2+x^2\right)+\left(-2x+2x\right)+\left(125-1-3\right)\\ =121\)
\(b,150-\left(x-y\right)\left(x+y\right)+x^2-y^2\\ =150-\left(x^2-y^2\right)+x^2-y^2\\ =150-x^2+y^2+x^2-y^2\\ =150+\left(-x^2+x^2\right)+\left(-y^2+y^2\right)\\ =150\)
a.
\(x\left(y+z-yz\right)-y\left(z+x-xz\right)+z\left(y-x\right)=xy+xz-xyz-yz-xy+xyz+yz-xz=0\)
Vậy giá trị của biểu thức rên không phụ thuộc vào x.
b.
\(\left(x+1\right)\left(1+x-x^2+x^3-x^4\right)-\left(x-1\right)\left(1+x+x^2+x^3+x^4\right)+2x^5-2x\)
\(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2-x^3-x^4-x^5+1+x+x^2+x^3+x^4+2x^5-2x\)
= 2
Vậy giá trị của biểu thức trên không phụ thuộc vào x.
( x + y - z - t )2 - ( z + t - x - y )2
= [( x + y - z - t ) + ( z + t - x - y )] . [( x + y - z - t ) - ( z + t - x - y )]
= 0 . [( x + y - z - t ) - ( z + t - x - y )]
= 0
=> Biểu thức trên không phụ thuộc vào biến