Chứng minh rằng (xm+xn+1) chia hết cho x2+x+1 khi và chỉ khi (mn-2) chia hết cho 3
Aps dụng phân tích đa thức phân tích thành nhân tử x7+x2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bây giờ mình sẽ trả lời chính câu hỏi của mình để các bạn tham khảo:
Đặt: \(m=3k+r\) với \(0\le r\le2\)và \(n=3t+s\)
\(\Rightarrow x^m+x^n+1=x^{3k+r}+x^{3t+s}+1\)\(=x^{3k}.x^r-x^r+x^{3t}.x^s-x^s+x^r+x^s+1\)
\(=x^r\left(x^{3t}-1\right)+x^s\left(x^{3t}-1\right)+x^r+x^s+1\)
Ta thấy: \(\left(x^{3k-1}\right)\)chia hết \(\left(x^2+x+1\right)\)và \(\left(x^{3t}-1\right)\) chia hết \(\left(x^2+x+1\right)\)
Vậy: \(\left(x^m+x^n+1\right)\)chia hết \(\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^r+x^s+1\right)\)chia hết \(\left(x^2+x+1\right)\)với \(0\le r;s\le2\)
\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)
\(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)
\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)
\(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)
\(\Rightarrow mn-2\)chia hết cho \(3\).
Áp dụng:\(m=7;n=2\Rightarrow mn-2=12\)chia hết cho 3
\(\Rightarrow\left(x^7+x^2+1\right)\) chia hết cho \(\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^7+x^2+1\right):\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)
Bạn chứng minh hộ mình
\(x^{3t}-1\) chia hết cho \(x^2+x+1\) với
Đặt \(m=3k+r\)với \(0\le r\le2\) \(n=3t+s\)với \(0\le s\le2\)
\(\Rightarrow x^m+x^n+1=x^{3k+r}+x^{3t+s}+1=x^{3k}+x^r-x^r+x^{3t}x^s-x^s+x^r+x^s+1\)
\(=x^r\left(x^{3k}-1\right)+x^s\left(x^{3t}-1\right)+x^r+x^s+1\)
Ta thấy : \(\left(x^{3k}-1\right)⋮\left(x^2+x+1\right)\)và \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\)
Vậy : \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)với \(0\le r;s\le2\)
\(\Leftrightarrow\hept{\begin{cases}r=2\\r=1\end{cases}}\)và\(\hept{\begin{cases}s=1\\s=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m=3k+2\\m=3k+1\end{cases}}\)và\(\hept{\begin{cases}n=3t+1\\n=3t+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\\mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\end{cases}}\)
\(\Leftrightarrow\left(mn-2\right)⋮3\)Điều phải chứng minh
Áp dụng : \(m=7;n=2\Rightarrow mn-2=12:3\)
\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^7+x^2+1\right):\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)