2) Giải phương trình
a) \(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
b) \(\left(2x+3\right).\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right).\left(\frac{3x+8}{2-7x}+1\right)\)
3) Rút gọn
a) \(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}+\frac{-x}{x+1}+2\)
b) \(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}+\frac{1}{1-x}-1,5\)
c) \(\left(\frac{x^2}{x^3-4x}-\frac{6}{3x-6}+\frac{1}{x+2}\right).\frac{x+2}{6}\)
d) \(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right):\frac{x^2-2xy+y^2}{x^2y-xy^2}\)
e) \([\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}-\frac{1}{\left(2x+y\right)^2}].\frac{x^2+4xy+y^2}{16x}\)
Mn giúp mik vs mik đang cần gấp
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
bạn có thể giải ra giúp mik đc ko?