K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

hello

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Bài 1: 

$-1+2-3+4-5+6-7+8-...-2019+2020-2021$

$=(2+4+6+8+...+2020)-(1+3+5+...+2021)$

$=(\frac{2020-2}{2}+1).\frac{2020+2}{2}-(\frac{2021-1}{2}+1).\frac{2021+1}{2}=1021110- 1022121=-1011$

 

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Bài 1 cách 2:

$A=-1+2-3+4-5+6-7+8-....-2019+2020-2021$

$=-1+(2-3)+(4-5)+(6-7)+....+(2020-2021)$

$=-1+\underbrace{(-1)+(-1)+...+(-1)}_{1010}=-1+(-1).1010=-1011$

12 tháng 8 2015

a)$10^{28}$1028 chia 9 dư 1 

8 chia 9 dư 8

1 + 8 = 9 chia hết cho 9

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)

$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)

8 chia hết cho 8

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)

Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72

b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17

6 tháng 9 2015

Vì n(n+1) là hai số tự nhiên liên tiếp

=>n(n+1) chia hết cho 2

Ta có 3TH

TH1: Nếu n=3k

=>n(n+1)(2n+1) chia hết cho 3

TH2: Nếu n=3k+1

=>2n+1=6k+2+1=6k+3 chia hết cho 3

=>n(n+1)(2n+1) chia hết cho 3

TH3: Nếu n=3k+2

=>n+1=3k+3

=>n(n+1)(2n+1) chia hết cho 3

30 tháng 11 2016

Ta có :

A chia hết cho 8 vì mọi số hạng của A deduf chia hết cho 8 .

\(A=8+2^2+....+8^{2019}\)

\(\Rightarrow A=8\left(1+8\right)+.....+8^{2018}\left(1+8\right)\)

\(\Rightarrow A=8.9+.....+8^{2018}.9\)

=> A chia hết cho 9 .

Mà (8;9)=1

=> A chia hết cho 8x9=72

\(A=8\left(1+8+8^2\right)+....+8^{2017}\left(1+8+8^2\right)\)

\(A=8.73+....+8^{2017}.73\)

=> A chia hết cho 73

30 tháng 11 2016

Các bạn trả lời gấp giúp mình nhá!!!