1 tim x , biet
a) x - 7va 5/8 = 1 va 1/4
b) x + 7 va 5/8 = 9 va 1/4
c) ( x - 7 va 5/8 ) : 1/2 = 3
d) x / 1x3 + x/3x5+.....+x/97x99=99
giup mik nhanh nha . mik can gap lam
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x - \(\frac{1}{8}\)= \(\frac{7}{3}\)x \(\frac{21}{4}\)
x - \(\frac{1}{8}\)= \(\frac{49}{4}\)
x = \(\frac{49}{4}\)+ \(\frac{1}{8}\)
x = 98
b) x : \(\frac{3}{2}\) = \(\frac{1}{4}\)
x = \(\frac{1}{4}\)x \(\frac{3}{2}\)
x = \(\frac{3}{8}\)
c) \(\frac{103}{10}\) - x = \(\frac{4}{5}\)
x = \(\frac{103}{10}\)- \(\frac{4}{5}\)
x = \(\frac{19}{5}\)
d) x = 51 x \(\frac{4}{17}\)
x = \(12\)
(1-x)(x^2+1)=0 chắc chắn sẽ không nhận x=-1 hoặc x=5 làm nghiệm rồi
(2x^2+7)(8-mx)=0
=>8-mx=0
Nếu 8-mx=0 nhận x=-1 làm nghiệm thì m+8=0
=>m=-8
Nếu 8-mx=0 nhận x=5 làm nghiệm thì 8-5m=0
=>m=8/5
10 - x - |x - 5| = 0
=> x - |x - 5| = 10 - 0
=> x - |x - 5| = 10
=> |x - 5| = 10 - x
Điều kiện : 10 - x \(\ge\)0
Khi đó : |x - 5| = 10 - x
=> x - 5 = 10 - x
=> x + x = 10 + 5
=> 2x = 15
=> x = \(\frac{15}{2}\)( x \(\notin\)Z )
Vậy không tồn tại giá trị x.
\(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right)\div16\frac{2}{3}=0\)
\(1-\left(\frac{43}{8}+x-\frac{173}{24}\right)\div\frac{50}{3}=0\)
\(\left(\frac{43}{8}+x-\frac{173}{24}\right)\div\frac{50}{3}=1-0\)
\(\frac{43}{8}+x-\frac{173}{24}=1\times\frac{50}{3}=\frac{50}{3}\)
\(\frac{43}{8}+x=\frac{50}{3}+\frac{173}{24}=\frac{191}{8}\)
\(\Rightarrow x=\frac{191}{8}-\frac{43}{8}=\frac{148}{8}=\frac{37}{2}\)
(1+x)+(2+x)+(4+x)+(7+x)+...+(22+x)=77
=> (1+2+4+7+...+22)+(x+x+x+x+...+x)=77 ( 7 số hạng x)
=> 63 + 7x =77
=> 7x =77-63
=> 7x =14
=> x = 14:7
=> x =2
Vậy x = 2
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(\Rightarrow xy=5k.7k\)
\(\Rightarrow140=35k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2 ta có :
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Với k = -2 ta có :
+) \(\frac{x}{5}=-2\Rightarrow x=-10\)
+) \(\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)
b) Ta có :
\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
+) \(\frac{x}{2}=3\Rightarrow x=6\)
+) \(\frac{y}{5}=3\Rightarrow y=15\)
+) \(\frac{z}{7}=3\Rightarrow z=21\)
Vậy x = 6, y = 15 và z = 21
_Chúc bạn học tốt_
a, x.y/5.7=140/35
=140/35=4
x/5=4/7
x/7=5/4
x.7=5.4
x.7=20
x=20;7
x=20/7
b,chịu
tk thì tk ko tk cx đc
\(a,x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x-\frac{61}{8}=\frac{5}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{10}{8}+\frac{61}{8}=\frac{71}{8}=8\frac{7}{8}\)
\(b,x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x+\frac{43}{5}=\frac{37}{4}\)
=> \(x=\frac{37}{4}-\frac{43}{5}=\frac{13}{20}\)
\(c,\left[x-7\frac{5}{8}\right]:\frac{1}{2}=3\)
=> \(\left[x-\frac{61}{8}\right]=3\cdot\frac{1}{2}\)
=> \(\left[x-\frac{61}{8}\right]=\frac{3}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}=\frac{12}{8}+\frac{61}{8}=\frac{73}{8}=9\frac{1}{8}\)
d, \(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+\frac{x}{5\cdot7}+...+\frac{x}{97\cdot99}=99\)
=> \(\frac{x}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\cdot\frac{98}{99}=99\)
=> \(\frac{98x}{198}=99\)
=> 98x = 99 . 198
=> 98x = 19602
=> x = 19602 : 98 = 9801/49
a) \(x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{71}{8}\)
b) \(x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x=\frac{37}{4}-\frac{61}{8}\)
=> \(x=\frac{13}{8}\)
c) \(\left(x-7\frac{5}{8}\right):\frac{1}{2}=3\)
=> \(x-\frac{61}{8}=3.\frac{1}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}\)
=> \(x=\frac{73}{8}\)
d) \(\frac{x}{1.3}+\frac{x}{3.5}+...+\frac{x}{97.99}=99\)
=> \(x.\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)=99\)
=> \(\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)=99\)
=> \(x\left(1-\frac{1}{99}\right)=99:\frac{1}{2}\)
=> \(x.\frac{98}{99}=198\)
=> \(x=198:\frac{98}{99}=\frac{9801}{49}\)