Chứng minh rằng với mọi số nguyên x, x + \(\sqrt{x}\) không bao giờ là số chính phương
Mong các bạn và thầy cô giải đáp giúp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(N=n^4+4n^3+7n^2+6n+3=\left(n^2+n+1\right)\left(n^2+3n+3\right)\)
Do \(n\) và \(n+1\) luôn khác tính chẵn lẻ \(\Rightarrow n^2\) và \(n+1\) khác tính chẵn lẻ
\(\Rightarrow n^2+n+1\) luôn lẻ
Gọi \(d=ƯC\left(n^2+n+1;n^2+3n+3\right)\) \(\Rightarrow d\) lẻ
\(\Rightarrow n^2+3n+3-\left(n^2+n+1\right)⋮d\)
\(\Rightarrow2\left(n+1\right)⋮d\)
\(\Rightarrow n+1⋮d\)
\(\Rightarrow\left(n+1\right)^2⋮d\Rightarrow\left(n+1\right)^2-\left(n^2+n+1\right)⋮d\)
\(\Rightarrow n⋮d\Rightarrow n+1-n⋮d\Rightarrow d=1\)
\(\Rightarrow n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau
Giả sử tồn tại m nguyên dương thỏa mãn: \(\left(n^2+n+1\right)\left(n^2+3n+3\right)=m^3\)
Hiển nhiên \(m>1\), do \(n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau, đồng thời \(n^2+3n+3>n^2+n+1\)
\(\Rightarrow\left\{{}\begin{matrix}n^2+n+1=1\\n^2+3n+3=m^3\end{matrix}\right.\)
Từ \(n^2+n+1=1\Rightarrow\left[{}\begin{matrix}n=-1\\n=0\end{matrix}\right.\) đều ko thỏa mãn n nguyên dương
Vậy N luôn luôn ko là lập phương
nếu là chính phương thì ntn nha
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
đặt \(t=n^2+3n\left(t\in Z^+\right)\)
phương trình thành:
\(t\left(t+2\right)=t^2+2t\)
vì \(t^2< t^2+2t< t^2+2t+1\)
hay \(t^2< t^2+2t< \left(t+1\right)^2\)
=> \(t^2+2t\) không thể là số chính phương
=>\(n\left(n+2\right)\left(n+2\right)\left(n+3\right)\) luôn luôn không thể là số chính phương
Ta có: \(59\equiv3\left(mod7\right)\Rightarrow59^n\equiv3^n\left(mod7\right)\)
Tương tự: \(17^n\equiv3^n\left(mod7\right)\) ; \(9^n\equiv2^n\left(mod7\right)\)
\(\Rightarrow A\equiv3^n-3^n-2^n+2^n\left(mod7\right)\)
\(\Rightarrow A⋮7\)
Vẫn tương tự, ta có: \(A\equiv4^n-2^n-4^n+2^n\left(mod5\right)\)
\(\Rightarrow A⋮5\)
Mà 7 và 5 nguyên tố cùng nhau
\(\Rightarrow A⋮35\)
Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.
Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\)
\(\Rightarrow7\left(a+b\right)=m^2+n^2\)
\(\Rightarrow m^2+n^2⋮7\)
\(\Rightarrow m;n\) đều chia hết cho 7
\(\Rightarrow m^2;n^2\) đều chia hết cho 49
\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)
Cám ơn thầy ạ !
Đây là 1 loạt những bài toán về chuyên đề đồng dư thức , thầy đã nhiệt tình giúp đỡ em, em cám ơn ạ
Do \(2x^2-1\) luôn lẻ \(\Rightarrow y^3\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k-1\) với \(k>1\)
\(2x^2-1=\left(2k-1\right)^3=8k^3-12k^2+6k-1\)
\(\Rightarrow x^2=4k^3-6k^2+3k=k\left(4k^2-6k+3\right)\)
- Nếu \(k⋮3\Rightarrow x^2⋮3\Rightarrow x⋮3\)
- Nếu \(k⋮̸3\), gọi \(d=ƯC\left(4k^2-6k+3;k\right)\) với \(d\ne3\)
\(\Rightarrow4k^2-6k+3-k\left(4k-6\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow d=1\)
\(\Rightarrow4k^2-6k+3\) và \(k\) nguyên tố cùng nhau
Mà \(k\left(4k^2-6k+3\right)=x^2\Rightarrow\left\{{}\begin{matrix}k^2=m^2\\4k^2-6k+3=n^2\end{matrix}\right.\)
Xét \(4k^2-6k+3=n^2\Rightarrow16k^2-24k+12=\left(2n\right)^2\)
\(\Rightarrow\left(4k-3\right)^2+3=\left(2n\right)^2\)
\(\Rightarrow\left(2n-4k+3\right)\left(2n+4k-3\right)=3\)
Giải pt ước số cơ bản này ta được nghiệm nguyên dương duy nhất \(k=1\) (không thỏa mãn \(k>1\))
Vậy \(x⋮3\)
\(a^2+4\left(b+c\right)^2-bc=4a\left(b+c\right)\)
\(\Rightarrow\left[a-2\left(b+c\right)\right]^2=bc\)
Do \(\left(b,c\right)=1\) và \(b.c\) là 1 số chính phương
\(\Rightarrow b,c\) đều là các số chính phương