Cho tam giác ABC vuông góc ở A, có đường cao AD. Gọi M là trung điểm của AD, N là trung điểm của DC
a) chứng minh : MN//AC
b) chứng minh : BM vuông góc AN
MẤY BẠN GIÚP MÌNH VỚI, MÌNH CẦN GẤP LẮM Ạ!!!! MÌNH SẼ TRẢ ĐỦ TICK CHO MẤY BẠN, CẢM ƠN NHIỀU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
jfccfffcfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
4)
theo câu 2,ta có:\(\Delta ABM=\Delta CDM\left(g.cg\right)\)
\(\Rightarrow AB=CD\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD=IB=BA=CK=KD\)
xét \(\Delta\) AIM và \(\Delta\)CKM có:
AI=CK(cmt)
AM=MC(gt)
góc IAM=góc MCK=\(90^o\)
=>\(\Delta AIM=\Delta CKM\left(c.g.c\right)\)
\(\Rightarrow\widehat{IMA}=\widehat{CMK}\) => M là giao điểm của IK và AC
=> I,M,K thẳng hàng
M là trung điểm BC
=> MB = MC
tia đối MB lấy D cho MD = MB
=> C và D chung một điểm
=> không tạo được tam giác
hình như đề sai bạn ơi
a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>BA=BN; MA=MN
=>BM là trung trực của AN
=>BM vuông góc AN
b: Xét ΔMBC có
MN vừa là đường cao, vừa là trung tuyến
nên ΔMBC cân tại M
=>góc ACB=góc MBC=1/2gócABC
=>góc ABC=60 độ; góc ACB=30 độ
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@