Tìm nghiệm của đa thức sau:
\(-12x^3+11x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(G\left(x\right)=11x^3+5x^2+4x+10=0\)
\(\left(x+1\right)\left(11x^2-6x+10\right)=0\)
TH1 : \(x=-1\)(tm)
TH2 : \(11x^2-6x+10=0\)
\(\left(-6\right)^2-4.10.11=36-440< 0\)(ktm)
Vậy đa thức có nghiệm x = -1
G(x)=11x3+5x2+4x+10
Để G(x)=0 => 11x3+5x2+4x+10=0
(x+1)(11x2-6x+10)=0
* x+1=0 => x=-1
* 11x2-6x+10=0 => 6x(5x-1)+10=0
6x(5x-1)=-10
+) 6x=0 => x=0
+) 5x-1=0 => x=1/5
Vậy...........................................................
ko chắc cho lắm
a.\(x^2+11x-12\)
<=>\(x^2-x+12x-12\)
<=> \(x\left(x-1\right)+12\left(x-1\right)\)
<=> \(\left(x-1\right)\left(x+12\right)\)
b. \(2x^2-7x+9\)
Bài này mik kh pk lm, kh cs số nào nhân lại bằng 18 và cộng lại bằng -7 cả
c. \(x^2-12x+20\)
<=> \(x^2-2x-10x+20\)
<=> \(x\left(x-2\right)-10\left(x-2\right)\)
<=> \(\left(x-2\right)\left(x-10\right)\)
d. \(4x^2-13x+3\)
<=> \(4x^2-12x-x+3\)
<=> \(4x\left(x-3\right)-\left(x-3\right)\)
<=> \(\left(x-3\right)\left(4x-1\right)\)
e. \(x^2-8x-20\)
<=> \(x^2+2x-10x-20\)
<=> \(x\left(x+2\right)-10\left(x+2\right)\)
<=> \(\left(x+2\right)\left(x-10\right)\)
+)đặt f(x)=3x2-5x+2=0
3x2-3x-2x+2=0
3x(x-1)-2(x-1)=0
(3x-2)(x-1)=0
3x=2 hoặc x=1
x=2/3 hoặc x=1
+)đặt f(x)=3x^2-5x+2=0
3x^2-3x-2x+2=0
3x(x-1)-2(x-1)=0
(3x-2)(x-1)=0
=>x=2/3 hoặc x=1
\(\left(x-\frac{9}{4}\right)\left(x+\frac{4}{3}\right)\left(120x^3+12x^2-24x+36\right)\)
Dựa vào lược đồ Hoóc-le sau khi phân tích, ta có:
f(x)=x3+6x2+11x+6=0
Suy ra:(x-1)(x2+5x+6)=0
Vậy x-1=0 =>x=1 (1)
Hoặc x2+5x+6=0 =>x2 -x+6x+6=0 =>x(x+1)+6(x+1)=0 =>(x+1)(x+6)=0
=> x+1=0 =>x=-1 (2)
hoặc x+6=0 =>x=-6 (3)
Từ (1),(2) và (3) =>Đa thức F(x) có 3 nghiệm là x=1;x=-1 và x=-6.
~~~~CHÚC BN HOK TỐT~~~~~
Nếu bn ko hiểu về lược đồ Hoóc-le thì lên mạng tra nha!!!!