tính A = \(\sqrt{1+2018^2+\left(\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
\(\left(\frac{19}{2018}-2019\right).\frac{1}{2019}-\left(\frac{1}{2018}-2019\right).\frac{19}{2019}\)
\(=\frac{19}{2018}-2019.\frac{1}{2019}-\frac{-1}{2018}+2019.\frac{19}{2019}\)
\(=\left(\frac{19}{2018}-\frac{-1}{2018}\right)-\left(2019+2019\right).\left(\frac{1}{2019}.\frac{19}{2019}\right)\)
\(=\frac{18}{2018}-2038.\frac{19}{2019}\)
còn đâu tự tính nha
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
Đặt \(2018=a\)
\(\Rightarrow\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}=\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}=\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2019\)
ta xét : \(\sqrt{a^2+b^2+\frac{a^2}{\left(\frac{a}{b}+1\right)^2}}=\sqrt{\left(a+b\right)^2-2ab+\frac{a^2b^2}{\left(a+b\right)^2}}=\sqrt{\left(a+b\right)^2-2.\left(a+b\right).\frac{ab}{a+b}+\frac{a^2b^2}{\left(a+b\right)^2}}=\sqrt{\left(a+b-\frac{ab}{a+b}\right)^2}=\left|a+b-\frac{ab}{a+b}\right|\)
áp dụng vào bài toán :
\(A=\left|1+2018-\frac{2018}{2019}\right|+\frac{2018}{2019}=2019\)
thanks ạ