cho tam giac ABC can tai A duong trung tuyen AM a .cmr:am la phan giac cua BAC∠
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nen AE/EC=AM/MC(2)
Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC
b: \(\widehat{MDE}+\widehat{MED}=\widehat{DMB}+\widehat{EMC}\)
\(=\dfrac{1}{2}\cdot\left(\widehat{AMB}+\widehat{AMC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔDME vuông tại M
c: Xét ΔABM có DI//BM
nên DI/BM=AD/AB(1)
Xét ΔACM có IE//CM
nên IE/CM=AE/AC(2)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(3)
Từ (1), (2)và (3) suy ra ID=IE
hay I là trung điểm của DE
a: XétΔBEM vuông tại E và ΔCFM vuông tại F có
BM=CM
góc B=góc C
=>ΔBEM=ΔCFM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ME=MF
=>ΔAEM=ΔAFM
=>AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
=>ΔABD=ΔACD
=>DB=DC
=>D nằm trên trung trực của BC
=>A,M,D thẳng hàng