giúp em với ạ gấp lắm 15p ạ vd 3 vd4 vd5 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A giao B bằng rỗng thì \(\left[{}\begin{matrix}m>+\infty\left(lọa\right)\\2< n\end{matrix}\right.\Leftrightarrow n>2\)
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)
\(\left|\overrightarrow{OA}-\overrightarrow{BO}\right|=\left|\overrightarrow{OA}-\overrightarrow{OD}\right|=DA=a\)
Bài 3:
\(a,\) Gọi \(\left(d\right):y=ax+b\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\0a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\Leftrightarrow\left(d\right):y=2x+1\)
\(b,\) PT hoành độ giao điểm:
\(-x^2=2x+1\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\Leftrightarrow y=-1\Leftrightarrow A\left(-1;-1\right)\)
Vậy \(A\left(-1;-1\right)\) là tọa độ giao điểm (P) và (d)
Bài 4:
PT có 2 nghiệm \(\Leftrightarrow\Delta'=16-3m\ge0\Leftrightarrow m\le\dfrac{16}{3}\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{8}{3}\\x_1x_2=\dfrac{m}{3}\end{matrix}\right.\)
Mà \(x_1^2+x_2^2=\dfrac{82}{9}\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{82}{9}\)
\(\Leftrightarrow\dfrac{64}{9}-\dfrac{2m}{3}=\dfrac{82}{9}\\ \Leftrightarrow\dfrac{2m}{3}=-2\Leftrightarrow m=-3\left(tm\right)\)
2:
a: pi/2<a<pi
=>cosa<0
sin^2a+cos^2a=1
=>cos^2a=1-4/9=5/9
=>cosa=-căn 5/3
cos2a=2*cos^2a-1=2*5/9-1=10/9-1=1/9
sin(2a-pi/6)
=sin2a*cospi/6-cos2a*sinpi/6
=2*sina*cosa*(căn 3/2)-1/9*1/2
\(=2\cdot\dfrac{2}{3}\cdot\dfrac{-\sqrt{5}}{3}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{1}{18}=\dfrac{-4\sqrt{15}-1}{18}\)
b; tan a=2
=>sin a=2*cosa
\(A=\dfrac{3\cdot\left(2\cdot cosa\right)^2-cos^2a+2}{5\cdot\left(2\cdot cosa\right)^2+3cosa\cdot2cosa}\)
\(=\dfrac{12\cdot cos^2a-cos^2a+2}{20cos^2a+6cos^2a}\)
\(=\dfrac{11cos^2a+2\left(4cos^2a+cos^2a\right)}{26cos^2a}=\dfrac{21}{26}\)
4:
a: (C): x^2+y^2-4x+2y-4=0
=>x^2-4x+4+y^2+2y+1=9
=>(x-2)^2+(y+1)^2=9
=>I(2;-1); R=3
b: Gọi (d) là phương trình cần tìm
(d)//4x+3y-1=0
=>(d): 4x+3y+c=0
I(2;-1);R=3
Theo đề, ta có: d(I;(d))=R=3
=>\(\dfrac{\left|4\cdot2+3\cdot\left(-1\right)+c\right|}{\sqrt{4^2+3^2}}=3\)
=>|c+5|=15
=>c=10 hoặc c=-20