Tìm x biết
a.(2x-3)^2=36
b.(2x-3)^2=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x^2-3x\left(x-2\right)=36\\ \Leftrightarrow3x^2-3x^2+6x=36\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\\ b,5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x+2\right)=-36\\ \Leftrightarrow20x^3-10x^2+5x-20x^3+10x^2-4x+36=0\\ \Leftrightarrow\left(20x^3-20x^3\right)+\left(-10x^2+10x^2\right)+\left(5x-4x\right)=-36\\ \Leftrightarrow x=-36\)
\(\dfrac{x}{y}=\dfrac{-3}{4}\)
⇒\(\dfrac{x}{-3}=\dfrac{y}{4}\)
⇒\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)
⇒\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)
`(2x+5)(2x-7)-(2x-3)^2=36`
`<=>4x^2-14x+10x-35-(4x^2-12x+9)=36`
`<=>4x^2-4x-35-4x^2+12x-9=36`
`<=>8x-44=36`
`<=>8x=80`
`<=>x=10`
Vậy `S={10}`
Ta có: \(\left(2x+5\right)\left(2x-7\right)-\left(2x-3\right)^2=36\)
\(\Leftrightarrow4x^2-14x+10x-35-\left(4x^2-12x+9\right)=36\)
\(\Leftrightarrow4x^2-4x-35-4x^2+12x-9=36\)
\(\Leftrightarrow8x-44=36\)
\(\Leftrightarrow8x=80\)
hay x=10
Vậy: S={10}
\(A.\left(2a+1\right)^2-4\left(a+2\right)^2=9\\ \left(2a+1-2a-4\right)\left(2a+1+2a+4\right)=9\)
\(-3\left(4a+5\right)=9\\ -12a-15=9\\ -12a=24\\ a=-2\)
c) x( 2x - 3 ) - 2( 3 - 2x) =0
\(\Leftrightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=\frac{3}{2}\end{array}\right.\)
d) 25x2 - 36 =0
\(\Leftrightarrow\left(5x\right)^2-6^2=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)
\(\Leftrightarrow x=\pm\frac{6}{5}\)
a) \(x\left(2x-3\right)-2\left(3-2x\right)=0\)
=> \(\left(2x-3\right)\left(x+2\right)=0\)
=>\(\left[\begin{array}{nghiempt}2x-3=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-2\end{array}\right.\)
b) \(25x^2-36=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{6}{5}\\x=-\frac{6}{5}\end{array}\right.\)
a. (2x-3)2 = 36
(2x-3)2 = 62
=> TH1: 2x - 3 = 6
2x = 9
x = 9/2
TH2: 2x - 3 = -6
2x = -6 + 3
2x = -3
x = -3/2
Vậy x \(\in\){ -3/2 ; 9/2)
Câu b tương tự
a.(2x-3)^2=36
\(\Rightarrow\left(2x-3\right)^2=6^2\)
\(\Rightarrow2x-3=6\)
\(\Rightarrow2x=9\)\(\Rightarrow x=9:2=\frac{9}{2}\)