K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

nội dung gì mà tùm lum không hiểu

28 tháng 6 2015

a) tam giác AMD VÀ CMB: MD=MB; GÓC AMD=GÓC CMD(ĐỐI ĐỈNH);  MA=MC

=> 2 TAM GIÁC BẰNG NHAU (C.G.C)=> GÓC DAM=GÓC BCM. MÀ 2 GÓC VỊ TRÍ SLT => AD//BC

B) TƯƠNG TỰ CÂU A C/M: TAM GIÁC AMB= TAM GIÁC CMD => GÓC MBA =GÓC MCD.

MÀ 2 GÓC VTRÍ SLT => AB//CD => ABCD LÀ HBH => GÓC ADC=GÓC ABC. <=> GÓC ADC=ACB

MÀ GÓC ACB=GÓC DAC(CMT) => GÓC ADC=GÓC DAC => TAM GIÁC ACD CÂN TẠI C => CA=CD

C) TAM GIÁC DBE : DI LÀ TRUNG TUYẾN. . VÌ ABCD LÀ HBH => M CŨNG LÀ TRUNG ĐIỂM DB => TAM GIÁC DBE: EM CŨNG LÀ TRUNG TUYẾN. 

C LÀ TRỌNG TÂM => DI CẮT ME tại C. => D,I,C THẲNG HÀNG. HAY DI ĐI QUA C

26 tháng 4 2019

Sao tam giác ABM = tam giác DCM đc

26 tháng 4 2019

Xét tam giác ABC có 

     AB = AC ( = 5 cm )

=> tam giác ABC cân tại A ( ĐN)

Ta có AM là trung tuyến (gt)

=> AM là đg cao (t/c tam giác cân)

=> AM vuông BC (ĐN)

Ta có M là trung điểm của BC(AM là trung tuyến)

      => BM=CM=1/2 BC=6/2=3cm

Xét tam giác ABM có

    AM vuông BC (cmt)

=> tam giác ABM vuông tại M (ĐN)

=> AM2 +BM2 = AB2 (đ/l Pitago)

Thay số: AM2 + 3 = 5

=> AM2= 5-3

=> AM2= 2

=> AM = \(\sqrt{2}\)(cm)

b) tam giác  \(ABM\ne DCM\)

c) tam giác ACD ko cân

15 tháng 5 2021

undefined

14 tháng 4 2022

đoạn cm tam giác ade vuông bạn dùng tính chất j thế nói mik đc ko

Xét tứ giác ABCD có 

M là trung điểm của AC
M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra:AD//BC và AD=BC

hay AD//BE và AD=BE

Xét tứ giác AEBD có 

AD//BE

AD=BE

Do đó: AEBD là hình bình hành

Suy ra: AB và ED cắt nhau tại trung điểm của mỗi đường

=>I là trung điểm của AB

hay IA=IB

9 tháng 8 2017

. A B C M D E I 1 1 2 2 2 1 2

\(Xét\)\(\Delta AMB\)\(\Delta DMC\)có:

\(AM=MC\)(M là trung điểm của AC)

\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)

\(BM=MC\)(gt)

=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)

Mà 2 góc này ở vị trí so le trong

=>AB//DC

=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)

Xét \(\Delta ABE\)\(\Delta DCB\)có:

\(AB=DC\)

\(\widehat{ABE}=\widehat{DCB}\)

\(EB=BC\)

=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)

=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)

Mà 2 góc này ở vị trí đồng vị

=>AE//BD

Xét \(\Delta AIE\)\(\Delta BID\)có:

\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)

\(AE=DC\)

\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)

=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)

=>\(AI=BI\)

Vậy AI=IB