K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Ta có : \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

Nên : \(\frac{100^9+1}{100^9-4}>\frac{100^9+1+3}{100^9-4+3}=\frac{100^9+4}{100^9-1}\)

Vậy \(A>B\)

5 tháng 4 2017

cảm ơn bạn

18 tháng 5 2020

Ta có A = \(\frac{100^9+4}{100^9-1}=\frac{100^9-1+5}{100^9-1}=1+\frac{5}{100^9-1}\)

B = \(\frac{100^9+1}{100^9-4}=\frac{100^9-4+5}{100^9-4}=1+\frac{5}{100^9-4}\)

Vì \(\frac{5}{100^9-1}>\frac{5}{100^9-4}\Rightarrow1+\frac{5}{100^9-1}>1+\frac{5}{100^9-4}\Rightarrow A>B\)

9 tháng 7 2020

a) \(A=\frac{15^{16}+1}{15^{17}+1}\)\(B=\frac{15^{15}+1}{15^{16}+1}\)

ta có \(A=\frac{15^{16}}{15^{17}}\)\(B=\frac{15^{15}}{15^{16}}\)

ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau

mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B 

\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)

\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)

\(\Rightarrow A>B\)

\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)

+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)

\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)

Vậy A<B

b)Đề sai

Chúc bạn học tốt

10 tháng 4 2018

\(D=\frac{100^{15}+1}{100^{16}+1}\)

\(\Rightarrow D=\frac{100.\left(100^{15}+1\right)}{100.\left(100^{16}+1\right)}\)

\(\Rightarrow D=\frac{100^{16}+100}{100^{17}+100}\)

Vì \(\forall a;b\inℕ^∗;a< b;b\ne0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)

\(\Rightarrow C=\frac{100^{16}+1}{100^{17}+1}< \frac{100^{16}+1+99}{100^{17}+1+99}\)

\(\Rightarrow C< \frac{100^{16}+100}{100^{17}+100}=\frac{100^{15}+1}{100^{16}+1}\)

\(\Rightarrow C< D\)

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

24 tháng 5 2016

\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)

\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)

Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)

Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).

25 tháng 3 2017

mk giải cho câu A rồi tự suy mấy câu khác nhé!

ta có : A = 10^8 + 2/10^8 - 1

     => A = 10^8 - 1 + 3/10^8 - 1

     => A = 1+ 3/10^8 - 1

          B = 10^8/10^8 - 3

    =>  B = 10^8 - 3 + 3/10^8 - 3

    =>  B = 1+ 3/10^8 - 3

vì 3/10^8 - 1 < 3/10^8 - 3

=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3

=> A < B

vậy A < B

cách này cô dạy mk đó

7 tháng 4 2018

Ta có : 

\(100C=\frac{100^{17}+100}{100^{17}+1}=\frac{100^{17}+1+99}{100^{17}+1}=\frac{100^{17}+1}{100^{17}+1}+\frac{99}{100^{17}+1}=1+\frac{99}{100^{17}+1}\)

\(100D=\frac{100^{16}+100}{100^{16}+1}=\frac{100^{16}+1+99}{100^{16}+1}=\frac{100^{16}+1}{100^{16}+1}+\frac{99}{100^{16}+1}=1+\frac{99}{100^{16}+1}\)

Vì \(\frac{99}{100^{17}+1}< \frac{99}{100^{16}+1}\) nên \(1+\frac{99}{100^{17}+1}< 1+\frac{99}{100^{16}+1}\) hay \(100A< 100B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

7 tháng 4 2018

Ta có : \(100C=\frac{100^{17}+100}{100^{17}+1}=1+\frac{100}{100^{17}+1}\)

         \(100D=\frac{100^{16}+100}{100^{16}+1}=1+\frac{100}{100^{16}+1}\)

Mà \(\frac{100}{100^{17}+1}< \frac{100}{100^{16}+1}\)

\(\Rightarrow10C< 10D\Rightarrow C< D\)