I. So sánh :
a, \(A=\frac{100^9+4}{100^9-1}\)và \(B=\frac{100^9+1}{100^9-4}\)
b, \(C=\frac{100^{16}+1}{100^{17}+1}\)và \(D=\frac{100^{15}+1}{100^{16}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Nên : \(\frac{100^9+1}{100^9-4}>\frac{100^9+1+3}{100^9-4+3}=\frac{100^9+4}{100^9-1}\)
Vậy \(A>B\)
Ta có A = \(\frac{100^9+4}{100^9-1}=\frac{100^9-1+5}{100^9-1}=1+\frac{5}{100^9-1}\)
B = \(\frac{100^9+1}{100^9-4}=\frac{100^9-4+5}{100^9-4}=1+\frac{5}{100^9-4}\)
Vì \(\frac{5}{100^9-1}>\frac{5}{100^9-4}\Rightarrow1+\frac{5}{100^9-1}>1+\frac{5}{100^9-4}\Rightarrow A>B\)
a) \(A=\frac{15^{16}+1}{15^{17}+1}\)và\(B=\frac{15^{15}+1}{15^{16}+1}\)
ta có \(A=\frac{15^{16}}{15^{17}}\)và\(B=\frac{15^{15}}{15^{16}}\)
ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau
mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B
\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow A>B\)
\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)
+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)
\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
Vậy A<B
b)Đề sai
Chúc bạn học tốt
\(D=\frac{100^{15}+1}{100^{16}+1}\)
\(\Rightarrow D=\frac{100.\left(100^{15}+1\right)}{100.\left(100^{16}+1\right)}\)
\(\Rightarrow D=\frac{100^{16}+100}{100^{17}+100}\)
Vì \(\forall a;b\inℕ^∗;a< b;b\ne0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
\(\Rightarrow C=\frac{100^{16}+1}{100^{17}+1}< \frac{100^{16}+1+99}{100^{17}+1+99}\)
\(\Rightarrow C< \frac{100^{16}+100}{100^{17}+100}=\frac{100^{15}+1}{100^{16}+1}\)
\(\Rightarrow C< D\)
\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)
\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)
Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)
Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
Ta có :
\(100C=\frac{100^{17}+100}{100^{17}+1}=\frac{100^{17}+1+99}{100^{17}+1}=\frac{100^{17}+1}{100^{17}+1}+\frac{99}{100^{17}+1}=1+\frac{99}{100^{17}+1}\)
\(100D=\frac{100^{16}+100}{100^{16}+1}=\frac{100^{16}+1+99}{100^{16}+1}=\frac{100^{16}+1}{100^{16}+1}+\frac{99}{100^{16}+1}=1+\frac{99}{100^{16}+1}\)
Vì \(\frac{99}{100^{17}+1}< \frac{99}{100^{16}+1}\) nên \(1+\frac{99}{100^{17}+1}< 1+\frac{99}{100^{16}+1}\) hay \(100A< 100B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta có : \(100C=\frac{100^{17}+100}{100^{17}+1}=1+\frac{100}{100^{17}+1}\)
\(100D=\frac{100^{16}+100}{100^{16}+1}=1+\frac{100}{100^{16}+1}\)
Mà \(\frac{100}{100^{17}+1}< \frac{100}{100^{16}+1}\)
\(\Rightarrow10C< 10D\Rightarrow C< D\)