Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là t/điểm của AD, BC, AC
a)So sánh EK và CD, EF và AB
b)C/m EF\(\le\frac{AB+CD}{2}\)
CÁC BẠN VẼ HÌNH LUN GIÚP MÌNH VỚI NHA!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ADC có:
E là trung điểm AD
K là trung điểm AC
=> EK là đường trung bình
\(\Rightarrow EK=\dfrac{1}{2}CD\)
Xét tam giác ABC có:
F là trung điểm BC(gt)
K là trung điểm AC(gt)
=> KF là đường trung bình
\(\Rightarrow KF=\dfrac{1}{2}AB\)
Sửa đề: \(CM:EF\le\dfrac{AB+CD}{2}\)
Ta có: \(EF\le EK+KF=\dfrac{1}{2}AB+\dfrac{1}{2}CD=\dfrac{AB+CD}{2}\)
a) + ΔADC có: AE = ED (gt) và AK = KC (gt)
⇒ EK là đường trung bình của ΔADC
⇒ EK = CD/2
+ ΔABC có AK = KC (gt) và BF = FC (gt)
⇒ KF là đường trung bình của ΔABC
⇒ KF = AB/2.
b) Ta có: EF ≤ EK + KF =
(Bổ sung: ⇔ EF = EK + KF ⇔ E, F, K thẳng hàng ⇔ AB // CD)
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK = CD/2
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = AB/2
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = CD/2 + AB/2 = (AB+CD)/2
Vậy EF ≤ (AB+CD)/2
27. Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.
a) So sánh các độ dài EK và CD, KF và AB.
b) Chứng minh rằng EF \(\le\dfrac{AB+CD}{2}\)
Bài giải:
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK =\(\dfrac{CD}{2}\)
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = \(\dfrac{AB}{2}\)
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = \(\dfrac{CD}{2}\) + \(\dfrac{AB}{2}\) = \(\dfrac{\left(AB+CD\right)}{2}\)
Vậy EF ≤ \(\dfrac{\left(AB+CD\right)}{2}\)
a: Xét ΔADC có
E là trung điểm của AD
K là trung điểm của AC
Do đó: EK là đường trung bình của ΔADC
Suy ra: EK//DC và \(EK=\dfrac{DC}{2}\)
Xét ΔABC có
K là trung điểm của AC
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔABC
Suy ra: KF//AB và \(KF=\dfrac{AB}{2}\)
bài 1
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK = CD/2
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = AB/2
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = CD/2 + AB/2= (AB +CD)/2
Vậy EF ≤ (AB +CD)/2
EK là đtbinh tam giác => EK=1/2 CD, KF=1/2 AB áp dụng Bđt trong tam giác EKF có EF< EK+KF =>EF< 1/2(AB+CD) . Khi K nằm giữa Evà F thì EF= EK+KF = 1/2(AB+CD) kết hợp cả 2 => đpcm
a) +)EK là đường trung bình nên EK = 1/2 . CD do đó EK < CD
+) EF và AB thì đang suy nghĩ
b) Ta có: \(EK=\frac{1}{2}CD=\frac{CD}{2}\)(t/c đường trung bình)
Tương tự, ta có \(KF=\frac{1}{2}AB\)
Cộng theo vế hai đẳng thức trên ta được:
\(\frac{AB+CD}{2}=EK+KF\ge EF\) ( theo quy tắc 3 điểm)
Đẳng thức xảy ra khi K thuộc EF, khi đó \(\hept{\begin{cases}EK\text{// }CD\\KF\text{//}AB\end{cases}}\) và K thuộc EF nên suy ra \(\hept{\begin{cases}EF\text{//}CD\\EF\text{//}AB\end{cases}}\Leftrightarrow AB\text{//}CD\)
P/s: Chỗ "đẳng thức xảy ra..." mình không chắc.