cho tam giác ABC vuông tại A , Đường cao AH . Gọi M,N lần lượt là trung điểm AH , CH . CM
a, MN//AC và MN=1/2AC
b, BM vg góc AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔHAB có
M là trung điểm của AH(gt)
N là trung điểm của BH(gt)
Do đó: MN là đường trung bình của ΔHBA(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AB và \(MN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MN\(\perp\)AC(đpcm)
Xét ΔAHB có
M là trung điểm của AH
N là trung điểm của BH
Do đó: MN là đường trung bình của ΔAHB
Suy ra: MN//AB
hay MN\(\perp\)AC
\(\text{a) Xét tam giác AHC có:}\)
\(\text{M là trung điểm AH}\)
\(\text{N là trung điểm HC}\)
\(\text{Do đó: MN là đường trung bình của tam giác AHC}\)
\(\Rightarrow MN//AC\text{ và }MN=\frac{1}{2}.AC\)
k dùng tính chất đường trung bình nha bạn , bạn còn cách khác k ạ