20052007 +20072005 chia hết cho 2006
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005 => 20062006 - 20062005 chia hết cho 2005.
b) 79m+1 - 79m = 79m x 79 - 79m = 79m x (79 - 1) = 79m x 78 chia hết cho 78 => 79m+1 - 79m chia hết cho 78.
c) 257 + 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1) = 512 x 5 x 6 = 512 x 30 chia hết cho 30 => 257 + 513 chia hết cho 30.
d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 56 x (64 - 5) = 56 x 49 chia hết cho 49 => 106 - 57 chia hết cho 49.
e) 710 - 79 - 78 = 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41 => 710 - 79 - 78 chia hết cho 41.
f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45 => 817 - 279 - 913 chia hết cho 45.
5) 413+325-88 =(22)13+(25)5-(23)8 =226+225-224 =224(22+2-1) =224.5 chia hết cho 5
6) \(2006^{1000}+2006^{999}=2006^{999}.\left(2006+1\right)=2006^{999}.2007\) chia hêt cho 2007
5) \(4^{13}+32^5-8^8=2^{26}+2^{25}-2^{24}=2^{24}.4+2^{24}.2-2^{24}.1=2^{24}.\left(4+2-1\right)=2^{24}.5\)
6) \(2006^{1000}+2006^{999}=2006^{999}.2006+2006^{999}.1=2006^{999}\left(2006+1\right)=2006^{999}.2007\)
B=2006+2006^2+...+2006^9+2006^10
=2006(1+2006)+...+2006^9(1+2006)
=2007(2006+...+2006^9) chia hết cho 2007
=>2006B=20062+20063+...+200610+200611
=>2006B-B=20062+20063+...+200610+200611-2006-20062-...-20069-200610
=>2005B=200611-2006
=>B=\(\frac{2006^{11}-2006}{2005}\)
A = 2006 + 20062 + 20063 + .... + 200610
A có số số hạng : ( 10 - 1 ) : 1 + 1 = 10 ssh . Ta chia A thành 5 cặp , mỗi cặp có 2 số .
=> A = ( 2006 + 20062 ) + ( 20063 + 20064 ) + .... + ( 20069 + 200610 )
A = 2006 . ( 1 + 2006 ) + 20063 . ( 1 + 2006 ) + .... + 20069 . ( 1 + 2006 )
A = 2006 . 2007 + 20063 . 2007 + ... + 20069 . 2007
A = 2007 . ( 2006 + 20063 + ... + 20069 )
=> A \(⋮\) 2007 ( đpcm )
Bài 1: Đề sai
Bài 2: (n+2005^2006)x(n+2006^2005)
Nhận thấy các số có tận cùng = 5 thì nhân cho chính nó cũng có tận cùng = 5 => 20052006 có tận cùng = 5
Các số có tận cùng bằng 6 thì nhân cho chính nó bao nhiên lần cũng có tận cùng bằng 6 => 20062005có tận cùng =6.
ta có n có 2 trường hợp: TH1: n là số lẻ
Nếu n là lẻ thì n+20052006 là chẵn
n+20062005 là lẻ
mà chẵn x lẻ= chẵn
TH1: (n+20052006)x(n+20062005) chia hết cho 2
TH2: n= chẵn
Nếu là chẵn thì n+20052006 là lẻ
n+20062005 là chẵn
mà chẵn x lẻ cũng = chẵn
TH2: (n+20052006)x(n+20062005) chai hết cho 2.
Ta thấy trong mọi trường hợp(n+2005^2006)×(n+2006^2005)đều chia hết cho 2 ĐPCM
\(2005^{2007}+2007^{2005}\)
\(=(2005^{2007}+1)+(2007^{2005}-1)\)
\(=(2005^{2007}+1^{2007})+(2007^{2005}-1^{2005})\)
Vì\(2005^{2007}+1^{2007}⋮(2005+1)\)
\(2007^{2005}-1^{2005}⋮(2007-1)\)
Nên \(2005^{2007}+1^{2007}⋮2006\)
\(2007^{2005}-1^{2005}⋮2006\)
\(\Rightarrow(2005^{2007}+1^{2007})+(2007^{2005}-1^{2005})⋮2006\)
\(\Rightarrow2005^{2007}+2007^{2005}⋮2006\)