K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Ngoài ra ta đặt BC=a;AC=b;AB=c thì ta có một đẳng thức cực kỳ đẹp sau đây:\(\frac{IA^2}{bc}+\frac{IB^2}{ca}+\frac{IC^2}{ab}=1\)

11 tháng 3 2019

a) Ta có: góc A + góc B + góc C = 180 độ ( tổng 3 góc trong tam giác)

               90 độ + 60 độ + góc C = 180 độ

                                          góc C = 180 độ - (90 độ + 60 độ)

                                           góc C = 30 độ

Xét tam giác ABC có:

góc A > góc B > góc C

(90 độ > 60 độ > 30 độ)

-> BC>CA>AB

(quan hệ giữa cạnh và góc đối diện)                         

19 tháng 5 2022

a,

Ta có :

Δ ABC vuông tại A

Mà AI là đường trung tuyến của BC

=> AI = BI = IC

Xét Δ AIB, có :

AI = BI (cmt)

=> Δ AIB cân tại A

Xét Δ AIC, có :

AI = AC (cmt)

=> Δ AIC cân tại I

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

=>ΔBAM=ΔBDM

BA=BD=3cm

CB=3+2=5cm

=>AC=4cm

 AB<AC<BC

=>góc C<góc B<góc A

b: ΔBAM=ΔBDM

=>MA=MD

Xét ΔAMN vuông tại A và ΔDMC vuông tại D có

MA=MD

góc AMN=góc DMC

=>ΔAMN=ΔDMC

=>MN=MC

=>ΔMNC cân tại M

3 tháng 3 2020

[​IMG]
a, dễ thấy AIMˆ=90+12CˆAIM^=90+12C^
mặt khác AIBˆ=360−BICˆ−AICˆ=Cˆ+12(Bˆ+Aˆ)AIB^=360−BIC^−AIC^=C^+12(B^+A^)
 12(Bˆ+Aˆ)=90−12Cˆ12(B^+A^)=90−12C^
⇒AIBˆ=90+12Cˆ⇒AIB^=90+12C^
⇒AIBˆ=AMIˆ⇒AIB^=AMI^
Xét tam giác AIM và ABI có:
AIBˆ=AMIˆ;BAIˆ=IAMˆAIB^=AMI^;BAI^=IAM^
vậy hai tam giác này đồng dạng
b, chứng minh tam giác BIN đồng dạng ABI kết hợp AIM đồng dạng ABI ta được: AI2=AM.AB;BI2=BN.AB⇒AI2BI2=AMBN