K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019
https://i.imgur.com/6Olhnm4.jpg
1 tháng 7 2018

a) Đúng

b) Đúng

c) Sai

d) Đúng

17 tháng 2 2021

TL: A, B, D: Đúng; C: Sai

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Chưa đủ dữ kiện đề bài để chứng minh đẳng thức. Bạn xem lại đề.

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

a)

$2\overrightarrow{AD}=\overrightarrow{AD}+\overrightarrow{AD}$

$=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{CD}$

$=\overrightarrow{AB}+\overrightarrow{AC}+(\overrightarrow{BD}+\overrightarrow{CD})$

$=\overrightarrow{AB}+\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$

Tương tự:

$\overrightarrow{BE}=\frac{\overrightarrow{BC}+\overrightarrow{BA}}{2}$

$\overrightarrow{CF}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}$

Cộng lại:

$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\frac{\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}}{2}=\overrightarrow{0$}$

Ta có đpcm.

b)

$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DA}+\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{MF}+\overrightarrow{FC}$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})+(\overrightarrow{DA}+\overrightarrow{EB}+\overrightarrow{FC})$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})-(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF})$

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}-\overrightarrow{0}$ (theo phần a)

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}$

Ta có đpcm.

23 tháng 8 2017

+ Trong không gian, hai đường thẳng chéo nhau vẫn có thể vuông góc với nhau.

Đường thẳng a có vectơ chỉ phương  u →

Đường thẳng b có vectơ chỉ phương  v →

Giải bài 3 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Câu 1: 

Gọi M là trung điểm của AC

AM=AC/2=2

\(BM=\sqrt{3^2+2^2}=\sqrt{13}\)

\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\cdot BM=2\sqrt{13}\)

Câu 6:

\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EF}+\overrightarrow{FA}\)

\(=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)