K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

\(M=\left(x^2+y^2\right)^2+x^4+x^2y^2+y^2\)

\(M=1+x^2\left(x^2+y^2\right)+y^2\)

\(M=1+x^2+y^2\)

\(M=1+1=2\)

câu b bạn xem lại đề ạ chắc thiếu mất dấu cộng

\(4\left(3x^2+5x+2\right)=0\Leftrightarrow12x^2+20x+8=0\)

\(\Leftrightarrow12x^2+20x+1=-7\)

3 tháng 8 2019

thanks bn nhaa, mk k cho bn rr

27 tháng 8 2021

\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)

\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)

\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)

\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)

27 tháng 8 2021

cảm ơn bạn

 

1 tháng 8 2018

Bài 1:

a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)

\(\Rightarrow4\left(x-2\right)-3x+4=0\)

\(\Rightarrow4x-8-3x+4=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)

\(\Rightarrow10x+35-15x-6=25\)

\(\Rightarrow-5x+29=25\)

\(\Rightarrow-5x=25-29\)

\(\Rightarrow-5x=-4\)

\(\Rightarrow x=\dfrac{4}{5}\)

c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Rightarrow-x-21=0\)

\(\Rightarrow x=-21\)

Bài 2:

a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(P=8x^2y-6y^2-9x^2y+12y^2\)

\(P=-x^2y+6y^2\)

Thay x = -1 ; y = 2 vào P ta được

\(P=-\left(-1\right)^2.2+6.2^2\)

\(P=-2+24=22\)

b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(Q=20x^3-12x^2y-4x^3-x^2y\)

\(Q=16x^3-13x^2y\)

Thay x = -1 ; y = 2 vào Q ta được

\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)

\(Q=-16-26\)

\(Q=-42\)

c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)

\(H=2xy\)

Thay x = 1/4 ; y = 2012 vào H ta được

\(H=2.\dfrac{1}{4}.2012\)

\(H=1006\)

1 tháng 8 2018

1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Leftrightarrow8x-16-6x+8=2\)

\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)

b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Leftrightarrow30x-20-15x-6+55-20x=25\)

\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)

\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)

2.

a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)

\(\Leftrightarrow x^2y-18y^2\)

tại x=-1 , y=2

ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)

vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2

b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)

\(\Leftrightarrow17x^3-13x^2y\)

tại x=-1,y=2

ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)

vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)

c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)

\(\Leftrightarrow x^4+2xy-x^3\)

tại x=1/4 và y=2012

ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)

13 tháng 8 2017

2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.

3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.

4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)

b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )

5) \(x^3=x\Leftrightarrow x=\pm1\)

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

21 tháng 8 2019

Tìm min mn  ạ

22 tháng 8 2019

Câu a, b, c thì đơn giản òi. Câu d phải chú ý điểm rơi:v

d) Ta có: \(D=\left(x-\frac{1}{2}\right)^4+\frac{1}{2}\left(3x^2-3x+\frac{15}{8}\right)\)

\(=\left(x-\frac{1}{2}\right)^4+\frac{3}{2}\left(x-\frac{1}{2}\right)^2+\frac{9}{16}\ge\frac{9}{16}\)

Đẳng thức xảy ra khi x = 1/2