K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Phân tích thành nhân tử:

(4x + 3y)2 + (6xy - 2)2

=\((16x^2+24xy+9y^2)+(36x^2y^2-24xy+4)\)

=\(16x^2+24xy+9y^2+36x^2y^2-24xy+4\)

=\(16x^2+9y^2+36x^2y^2+4\)

=\((4x)^2+(3y)^2+(6xy)^2+2^2\)

MÌNH CHỈ LÀM ĐC TỚI ĐÂY

3 tháng 8 2019

(a - b)3 - (b - a)2 + b(a - b)2

= (a - b)3 - ( a-b ) 2 + b( a-b ) 2

= ( a-b )2 . ( a - b - 1 + b )

= ( a2 - 2ab + b2 ) (a - 1 )

 vậy ....

3 tháng 8 2019

Mình không chắc là đúng đâu nhé

27 tháng 9 2016

Ta có:  x6 -y6= (x3) -(y3)2  = (x3  - y3)(x3 + y3)

27 tháng 9 2018

\(x^6-y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

hk 

tốt

5 tháng 10 2016

1+ x2 - y2 -2 =

=x2 -(y+1)2

= ( x+y+1)(x-y-1)

14 tháng 6 2018

a) \(\left(a+b\right)^3+\left(a+b\right)^3\)

\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)

\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)

\(=2\left(a+b\right)\)

b)  \(9x^2+6xy+y^2\)

\(=\left(3x+y\right)^2\)

\(=\left(3x+y\right)\left(3x+y\right)\)

c)  \(4x^2-25\)

\(=\left(2x\right)^2-5^2\)

\(=\left(2x+5\right)\left(2x-5\right)\)

11 tháng 12 2016

mình k ghi lại đề nha bạn

\(=\left(x-y\right)^2-16z^2\\ =\left(x-y-4z\right)\left(x-y+4z\right)\)

11 tháng 12 2016

x2-6xy+9y2-16z2

=[x2-2.3xy+(3y)2]-16z2

=[x-3y]2-[4y]2

=[x-3y-3z][x-3y+3z]

6 tháng 7 2019

a) 16(4x+5)2 - 25(2x+2)2

\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)

\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)

\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)

\(=\left(26x+30\right)\left(6x+10\right)\)

6 tháng 7 2019

\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)

\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)

\(c,\left(x+1\right)^4-\left(x-1\right)^4\)

\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)

\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)

\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)

\(=\left(2x^2+2\right)2x.2\)

\(=4x.2\left(x^2+1\right)\)

\(=8x\left(x^2+1\right)\)