K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(\sqrt{x-2}\)+\(\sqrt{x-10}\)= x\(^2\)-12x+36+4

<=>\(\sqrt{x-2}\)+\(\sqrt{x-10}\)-4=(x-6)\(^2\)

<=>(\(\sqrt{x-2}\)-2)+(\(\sqrt{x-10}\)-2)=(x-6)\(^2\)

<=>\(\dfrac{x-6}{\sqrt{x-2}+2}\)-\(\dfrac{x-6}{\sqrt{x-10}+2}\)-(x-6)\(^2\)=0

Nghiệm x = 6

Mk cũng k biết đúng hay k nữa ! hahahahaha!

31 tháng 10 2019

Em thử sử dụng phương pháp :Dùng BĐT ạ!

ĐKXĐ: \(2\le x\le10\)

Áp dụng BĐT Bunykovski: \(VT=\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)

Lại có: \(VP=\left(x^2-12x+36\right)+4=\left(x-6\right)^2+4\ge4\)

Từ đó suy ra \(VT\le4\le VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{10-x}\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\)

NV
21 tháng 7 2021

a.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)

Pt trở thành:

\(729\left(t^4-2t^2+1\right)+8t=36\)

\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)

\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)

NV
21 tháng 7 2021

b.

ĐKXĐ: ...

\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)

Đặt \(\sqrt{10+4x-x^2}=t\ge0\)

\(\Rightarrow-3t^2-5t+42=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{10+4x-x^2}=3\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow x=...\)

15 tháng 1 2019

xét vế trái :

\(\sqrt[]{x-2}+\sqrt{10-x}=< \sqrt{2\left(x-2+10-x\right)}=< 4\)

=>vp=<4

=>\(x^2-12x+40=< 4\)

=>\(\left(x-6\right)^2=< 0\)

=> xảy ra dấu = <=>x=6

vậy pt có nghiệm là 6

30 tháng 11 2017

Asp dụng BĐT Bunha, ta có:

\(\left(\sqrt{x-2}+\sqrt{10-x}\right)^2\le\left(1+1\right)\left(x-2+10-x\right)\le16\)

\(\Rightarrow\sqrt{x-2}+\sqrt{x-10}\le4\)

\(x^2-12x+40=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\le4\le VT\)

Dấu " = " xảy ra khi \(\Leftrightarrow VT=4=VT\)

\(\Leftrightarrow x=6\)

30 tháng 11 2017

Thanks bạn Wrecking ball rất nhiều

NV
13 tháng 11 2019

ĐKXĐ: \(2\le x\le10\)

Ta có \(VT\le\sqrt{2\left(x-2+10-x\right)}=4\)

\(VT=x^2-12x+36+4=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2=10-x\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)

12 tháng 10 2021

đội tuyển toán tự làm đi m 

12 tháng 10 2021

:)) chụp đi ku

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Áp dụng BĐT Cô-si ngược dấu ta có:

\(\sqrt{x-2}=\sqrt{1(x-2)}\leq \frac{1+(x-2)}{2}\)

\(\sqrt{x-10}=\sqrt{1(x-10)}\leq \frac{1+(x-10)}{2}\)

\(\Rightarrow x^2-12x+40=\sqrt{x-2}+\sqrt{x-10}\leq \frac{x-1}{2}+\frac{x-9}{2}=x-5\)

\(\Rightarrow x^2-13x+45\leq 0\)

\(\Leftrightarrow (x-\frac{13}{2})^2+\frac{11}{4}\leq 0\) (vô lý)

Do đó pt đã cho vô nghiệm.

30 tháng 9 2018

cai nay la cosi xuoi dau ma :3