CMR nếu a-b=1 thì
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)........\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) => \(\frac{a^2-b^2}{a-b}=a+b\)
\(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)\)=> \(\frac{a^4-b^4}{a^2-b^2}=a^2+b^2\)
\(a^8-b^8=\left(a^4-b^4\right)\left(a^4+b^4\right)\) => \(\frac{a^8-b^8}{a^4-b^4}=a^4+b^4\)
...............................................................................................
\(a^{64}-b^{64}=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\) => \(\frac{a^{64}-b^{64}}{a^{32}-b^{32}}=a^{32}+b^{32}\)
thay vào ta được
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)......\left(a^{32}+b^{32}\right)\)
\(=\frac{a^2-b^2}{a-b}.\frac{a^4-b^4}{a^2-b^2}.\frac{a^8-b^8}{a^4-b^4}.............\frac{a ^{64}-b^{64}}{a^{32}-b^{32}}\)
\(=\frac{a^{64}-b^{64}}{a-b}\)
mà a-b= 1 nên \(\frac{a^{64}-b^{64}}{a-b}=a^{64}-b^{64}\)
Có a = b+1
=> a - b =1
=> (a-b)(a+b)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = (a-b)(a^64-b^64)
=> (a^2-b^2)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = 1 . (a^64 - b^64)
=> (a^4-b^4)(a^4+b^4)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^8-b^8)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^16-b^16)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^32-b^32)(a^32+b^32) = a^64 - b^64
=> a^64-b^64 = a^64 - b^64
=> đpcm
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)
a) (2+1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2+1)(2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2^2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64
=(2^4-1)(2^4+1)....(2^32+1)-2^64
=......
=(2^32-1)(2^32+1)-2^64
=2^64-1-2^64=-1
b)Đặt A=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)+(5^128-3^128)/2
đặt B=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)
\(2B=\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=\left(5^4-3^4\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)
\(2B=.......\)
2B=(5^64-3^64)(5^64+3^64)
2B=5^128-3^128
B=(5^128-3^128)/2 (thế vào đề bài)
=> A=B+(5^128-3^128)/2=(5^128-3^128)/2+(5^128-3^128)/2=\(\frac{2\left(5^{128}-3^{128}\right)}{2}=\left(5^{128}-3^{128}\right)\)
a) A = ( 2-1)(2+1)(22+1)...(232+1)-264
=(22-1)(22+1)(24+1)... -264
=....
=264-1-264=1
câu b tương tự nhá
a, \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}=2^{64}-1-2^{64}=-1\)
b,\(B=\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
\(=\dfrac{\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)}{2}+\dfrac{5^{128}-3^{128}}{2}\)\(=\dfrac{\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}\)
\(=\dfrac{\left(5^{64}-3^{64}\right)\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}=\dfrac{2.5^{128}}{2}=5^{128}\)
a)\(\left(2+1\right)\left(2^2+1\right)....\left(2^{256}+1\right)-1\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)-1\)
\(=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{256}+1\right)-1\)
Tiếp tục như thế, ta được:
\(=\left(2^{256}-1\right)\left(2^{256}+1\right)-1=2^{512}-1-1=2^{512}-2\)
b) \(24\left(5^2+1\right)\left(5^4+1\right)...\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)...\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^4-1\right)\left(5^4+1\right)...\left(5^{32}+1\right)-5^{64}\)
Tiếp tục như thế, ta được:
\(=\left(5^{32}-1\right)\left(5^{32}+1\right)-5^{64}=5^{64}-1-5^{64}=-1\)
\(\left(2+1\right).\left(2^2+1\right)....\left(2^{256}+1\right)-1\)
\(\left(2-1\right).\left(2+1\right).\left(2^2+1\right).....\left(2^{256}+1\right)-1\)
\(=\left(2^2-1\right).\left(2^2+1\right)....\left(2^{256}+1\right)-1\)
\(=\left(2^{256}-1\right).\left(2^{256}+1\right)+1=2^{512}+1\)
Từ đầu bài
=> 1.\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\) \(+...+\left(a^{32}+b^{32}\right)\)= \(a^{64}-b^{64}\)
=> \(\left(a-b\right)\left(a+b\right)+...+\left(a^{32}+b^{32}\right)\)= \(a^{64}+b^{64}\)
=> \(\left(a^2-b^2\right)\left(a^2+b^2\right)+...+\left(a^{32}+b^{32}\right)\)= a^64 + b^64
tương tự sẽ ra kết quả cuối là \(\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\left(đpcm\right)\)