Cho \(x,y,z\) là các số hữu tỉ thỏa mãn \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\) . Chứng minh rằng
a) \(xy+yz+zx\) là bình phương của một số hữu tỉ
b) \(xy\) là bình phương của một số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\) là bình phương 1 số hữu tỉ => 4(xy+yz+zx) cũng là bp số hữu tỉ mà 4=22 => xy+yz+zx là bp 1 số hữu tỉ
b) \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\)\(\Leftrightarrow\)\(\left(x+y\right)^2+z^2=4xy+2yz+2zx\)
\(\Leftrightarrow\)\(\left(x+y\right)^2-2z\left(x+y\right)+z^2=4xy\)\(\Leftrightarrow\)\(\left(x+y-z\right)^2=4xy\)
Do (x+y-z)2 là bình phương 1 số hữu tỉ => 4xy là bp số hữu tỉ => xy là bp số hữu tỉ
Thật sự ra mục đích bài này đi chứng minh biểu thức trong ngoặc là scp
Đây là dề thi HSG toán cấp tỉnh Đồng Tháp
Có: \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}\)
\(=\sqrt{\left(x^2+xy+yz+xz\right)\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}\)
Sau đó thực hiên phân tích đa thức thành nhân tử mỗi ngoặc
\(=\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)là số hữu tỉ
Vậy
Câu số 1b đề thi hsg
Chào anh từ huyện Cao Lãnh
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath
\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)
\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)
\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)
\(\Leftrightarrow xy+1=\left(x+y\right)^2\)
Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)
Mình nghĩ đề cho : \(xy+yz+zx=1\) .
Ta có : \(P=\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)
\(=\left(x^2+xy+yz+zx\right)\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)\)
\(=\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)\)
\(=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\)
Vậy P là bình phương của một số hửu tỉ .
Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath