K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

A B C E K

a, xét tam giác ACE = tam giác AKE có : AE chung

góc ACE = góc AKE = 90 

góc CAE = góc KAE do AE là phân giác của góc BAC (gt)

=> tam giác ACE = tam giác AKE (ch-gn)

b, tam giác ABC vuông tại C (Gt)

=> góc BAC = góc ABC = 90 (đl)

mà góc BAC = 60 (gt)

=> góc ABC = 90 - 60 = 30    (1)

AE là phân giác của góc BAC (gt) 

=> góc CAE = góc KAE (đn)   

=> góc KAE = 1/2*góc BAC 

mà góc BAC = 60 

=> góc KAE = 1/2*60 = 30     (2)

=> (1)(2) => góc EAK = góc EBK 

=> tam giác EBA cân tại E (đn)

2 tháng 8 2019

hộ mình câu c đc ko ạ

a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE

=>ΔACE=ΔAKE

b: Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB cân tại E

=>EA=EB

Xét ΔECA vuông tại C và ΔEDB vuông tại D có

EA=EB

góc AEC=góc BED

=>ΔECA=ΔEDB

=>EC=ED

=>AD=BC

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0

a: \(\widehat{ABC}=30^0\)

b: Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

c: Ta có: ΔACE=ΔAKE

nên AC=AK; EC=EK

hay AE là đường trung trực của CK

d: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)

nên ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

hay KA=KB

27 tháng 2 2020

C A E K B D

a) Xét tam giác ACE và tam giác AKE

có AE chung

góc CAE =góc KAE (GT)

góc ECA = góc EKA =900

suy ra tam giác ACE = tam giác AKE (cạnh huyền-góc nhọn) (1)

b) Từ (1) suy ra AC=AK suy ra A thuộc đường trung trực của CK  (2)

Từ (1) suy ra EK=EC suy ra E thuộc đường trung trực của CK  (3)

Từ(2) và (3) suy ra AE là  đường trung trực của CK

c) tam giác ABC vuông tại C, có góc CAB = 600

suy ra AC=AB:2 ( cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)

mà AK=AC , AK +KB=AB

suy ra AK=AC=KB

d) tam giác BDE=tam giác BKE (cạnh huyền-góc nhọn)

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath

b) Xét tam giác vuông ACB và tam giác vuông BDA có:

Cạnh AB chung

\(\widehat{ABC}=\widehat{BAD}\left(=30^o\right)\)

\(\Rightarrow\Delta ACB=\Delta BDA\)  (Cạnh huyền góc nhọn)

\(\Rightarrow AD=BC\)

7 tháng 3 2018

sorry I don' nt

a: Xet ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE

=>ΔACE=ΔAKE

=>AC=AK và EC=EK

=>AE là trung trực của CK

=>AE vuông góc CK

b: Xét ΔABC vuông tại A có cosA=AC/AB

=>AC/AB=1/2

=>AB=2AC

Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB cân tại E

=>EB=EA>AC