K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

Mà đẳng thức trên xảy ra dấu =

\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)

Bài kia tí nghĩ nốt, khó v

26 tháng 8 2020

Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)

Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)

3 tháng 8 2018

vì bài toán bảo tính nên ta chỉ cần tìm \(x;y\) thỏa mãn tất cả các điều kiện bài toán rồi thế vào là được

ta có : \(x=0;y=0\) thõa mãn tất cả các điều kiện bài toán

thế vào \(S\) ta có : \(S=x+y=0+0=0\) vậy \(S=0\)

3 tháng 8 2018

\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)

\(\left(x^2+2018-x^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\)\(y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\)

\(x+y=\sqrt{x^2+2018}-\sqrt{y^2+2018}\left(1\right)\)

Làm tương tự : \(x+y=\sqrt{y^2+2018}-\sqrt{x^2+2018}\left(2\right)\)

Cộng vế với vế \(\left(1;2\right)\) , ta có : \(x+y=0\)

13 tháng 3 2018

Dễ thấy \(x=2017\)không là nghiệm của phương trình.

Ta có:

\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)

Đặt \(\frac{x-2018}{2017-x}=a\)

\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)

\(\Leftrightarrow24a^2+50a+24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)

NV
16 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)

\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)

18 tháng 2 2018

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

17 tháng 2 2018

Tử và mẫu giống nhau mà