K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019
Mọi người trả lời giùm minh đi minh đang có viêc gâp
1 tháng 8 2019

A B C D E F

a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)

b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2

Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:

\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)

\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)

Theo đề bài ta có AB = AC = 10 < BC = 12

Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)

c) Hướng dẫn:

\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)

Suy ra EB = FC. Từ đó suy ra AE = AF. 

Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)

Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra đpcm

a: BC=5cm
AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC>DE

6 tháng 8 2020

A B C D E F

A) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(10^2=6^2+AC^2\)

         \(100=36+AC^2\)

\(\Rightarrow AC^2=100-36\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

ta có \(AD+DC=AC\)

\(\Leftrightarrow3+DC=8\)

\(\Leftrightarrow DC=8-3=5\left(cm\right)\)

B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD LÀ CẠNH CHUNG 

=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)

\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )

=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B

c)  XÉT \(\Delta ADF\)VUÔNG TẠI A

\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )

VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )

TỪ (1) VÀ (2) 

\(\Rightarrow DF>ED\)

22 tháng 3 2022

A B C D E F

a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :

    \(BD=DC\)

     \(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)

     AB= AC

=>  \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)

b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao

=> \(AD\perp BC\)

*Nếu chx học cách trên thì bạn xem cách dưới đây"

Vì  \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)

=> \(AD\perp BC\)

c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :

\(\widehat{EBD}=\widehat{FCD}\)

\(BD=CD\)

=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)

d) Vì D là trung điểm của BC nên  \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)

Xét \(\Delta ADC\) vuông tại D có :

\(AC^2=AD^2+DC^2\)

\(100=AD^2+36\)

\(AD^2=100-36\)

\(AD^2=64\)

AD=8 cm

d: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>góc BKC=góc BCK

24 tháng 6 2021

undefined

undefined

 

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

c: Ta có: ΔBAD=ΔBED

nên DA=DE

Câu d, e