Cho tam giác MHK có MH=MK , I là trung điểm của đợn thẳng HK
a) Chứng minh tam giác MHI=MKI
b) Chứng minh góc H =góc K
c) Chứng minh HI là đừng trung trực của HK
Mn giúp mik với ! mik cảm ơn trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +) Xét tam giác AMB và tam giác AMC có:
BM=MC (M là trung điểm BC)
AB=AC (tam giác ABC cân tại A)
AM chung
=> Tam giác AMB= tam giác AMC (ccc) (đpcm)
+) Tam giác ABC cân tại A (gt) và M là trung điểm BC(gt)
AM vừa là đường cao vừa là đường trung tuyến của tam giác ABC
=> AM là phân giác \(\widehat{BAC}\)(đpcm)
b) Xét tam giác KMB và tam giác HMC có
MB=MC (M là trung điểm BC)
\(\widehat{BKM}=\widehat{CHM}=90^o\)
\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
=> Tam giác KMB=tam giác HMC (gcg) (đpcm)
c) Có tam giác KMB= tam giác HMC (cmt)
=> MK=MH (2 cạnh tương ứng (đpcm)
d)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc BAC
hay góc BAM= góc CAM
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
hay ΔMHK cân tại M
d: Xét ΔAHK có AH=AK
nên ΔAHK cân tại A
e: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
Bài khó quá yêu cầu ai đủ trình độ vô xơi bài này chứ tôi là tôi đang suy nghĩ
a, HS tự chứng minh
b, HS tự chứng minh
c, HS tự chứng minh
d, ∆MIH:∆MAB
=> M H M B = I H A B = 2 E H 2 F B = E H F B
=> ∆MHE:∆MBF
=> M F A ^ = M E K ^ (cùng bù với hai góc bằng nhau)
=> KMEF nội tiếp => M E F ^ = 90 0
Cm: a) Xét t/giác MHI và t/giác MKI
cí: MH = MK (gt)
MI : chung
HI = KI (gt)
=> t/giác MHI = t/giác MKI (c.c.c)
b) Ta có: t/giác MHI = t/giác MKI (cmt)
=> \(\widehat{H}=\widehat{K}\) (2 góc t/ứng)
c) Ta có: t/giác MHI = t/giác MKI (cmt)
=> \(\widehat{MIH}=\widehat{MIK}\) (2 góc t/ứng)
Mà \(\widehat{MIH}+\widehat{MIK}=180^0\) (kề bù)
=> \(\widehat{MIH}=\widehat{MIK}=90^0\)
=> MI \(\perp\)HK
mà HI = IK
=> MI là đường trung trực của HK