giải bpt
\(-4x^4-3x^2\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-5\right)\left(-x^2-3x+4\right)>=0\)
\(\Leftrightarrow\left(4x-5\right)\left(x^2+3x-4\right)< =0\)
=>(4x-5)(x+4)(x-1)<=0
BXD:
Theo BXD, ta được: x<=-4 hoặc 1<=x<=5/4
\(3x^2-7x+2>0\)
=>3x2-6x-x+2>0
=>(x-2)(3x-1)>0
=>x>2 hoặc x<1/3
=>x<=-4
ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-\frac{1}{2}\end{matrix}\right.\)
- Với \(\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\) BPT thỏa mãn
- Với \(x\ne\left\{-\frac{1}{2};2\right\}\Rightarrow\sqrt{2x^2-3x-2}>0\) BPT tương đương:
\(x^2-3x\ge0\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le0\end{matrix}\right.\)
Kết hợp lại ta được nghiệm: \(\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge3\\x=2\end{matrix}\right.\)
(2): =>(4x^2-1)(x^2-6x+9)<=0
=>(4x^2-1)(x-3)^2<=0
TH1: (4x^2-1)(x-3)^2=0
=>x=3 hoặc \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
TH2: (4x^2-1)(x-3)^2<0
=>4x^2-1<0
=>-1/2<x<1/2
a. TH1:
\(\left\{{}\begin{matrix}x^2+3x-4< 0\\3-2x>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>-4\end{matrix}\right.\\x>\dfrac{3}{2}\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x^2+3x-4>0\\3-2x< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\\x< \dfrac{3}{2}\end{matrix}\right.\)
Vậy nghiệm của BPT:
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>-4\end{matrix}\right.\\x>\dfrac{3}{2}\end{matrix}\right.\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\\x< \dfrac{3}{2}\end{matrix}\right.\)
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
\(-4x^2-3x^2\ge0\)
\(\Leftrightarrow-x^2\left(2x^2+3\right)\ge0\)
Vì \(-x^2\le0\Rightarrow-x^2\left(2x^2+3\right)\ge0\Leftrightarrow2x^2+3\le0\)
\(\Leftrightarrow2x^2\le-3\)
\(\Leftrightarrow x^2\le\frac{-3}{2}\)(vô lí)
Vậy \(x\in\phi\)