K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

Ta có :B = 1 + 3 + 32 + 33 + 34 + 3+ ...  + 397 + 398 + 399

             =  (1 + 3 + 32) + (33 + 34 + 35) + ...  + (397 + 398 + 399)

             =  (1 + 3 + 32) + 33 . (1 + 3 + 32) +...+ 397.(1 + 3 + 32)

             =  13 + 33 . 13 + ... + 397.13

             = 13.(1 + 33+ ... + 397\(⋮\)13

Vậy B\(⋮\)13 (đpcm)

Ta có : B = 1 + 3 + 32 + 33 + 34 + 3+ 36 + 37+ ... + 396 + 397 + 398 + 399

               = (1 + 3 + 32 + 33) + (34 + 3+ 36 + 37) + ... + (396 + 397 + 398 + 399)

               = (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)

               = 40 + 34 .40 + ... + 396. 40

               = 40.(1 + 34 + .. + 396\(⋮\)40

Vậy B \(⋮\) 40 (đpcm)

29 tháng 7 2019

a) B=1+3+32+33+...+399

B=(1+3+32)+(33+34+35)+...+(397+398+399)

B=(1+3+32)+33(1+3+32)+...397(1+3+32)

B=13+33.13+...+397.13

B=(1+33+...+97).13

=> b chia hết cho 13

b)B=(1+3+32+33)+...+(396+397+398+399)

B=(1+3+32+33)+34(1+3+32+33)+...+396(1+3+32+33)

B=40+34.40+...+396.40

B=(1+34+...+396).40

=> B hết cho 40

Ok rồi nha:v

16 tháng 10 2021

a: \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)

b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)

\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)

\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)

17 tháng 10 2021

undefined

9 tháng 12 2021

\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)

\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)

9 tháng 12 2021

\(a,S=3+3^2+3^3+...+3^{20}\)

Ta thấy:\(3+3^2=12⋮12\)

\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)

\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)

\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)

26 tháng 9 2017

a) \(\frac{4n+1}{2n-1}=\frac{4n-2+3}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}\)

\(=2+\frac{3}{2n-1}\). Vì \(2\in Z\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)

\(\Rightarrow2n-1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2n\in\left\{-2;0;2;4\right\}\)

\(\Rightarrow n\in\left\{-1;0;1;2\right\}\)

b)\(\frac{2n+5}{n+2}=\frac{2n+4+1}{n+2}=\frac{2.\left(n+2\right)+1}{n+2}\)

\(=\frac{2.\left(n+2\right)}{n+2}+\frac{1}{n+2}=2+\frac{1}{n+2}\). Vì \(2\in Z\Rightarrow n+2\inƯ\left(1\right)\)

\(\Rightarrow n+2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{-3;-1\right\}\)

c) \(\frac{2n-3}{n-2}=\frac{2n-4+1}{n-2}=\frac{2.\left(n-2\right)+1}{n-2}\)

\(=\frac{2.\left(n-2\right)}{n-2}+\frac{1}{n-2}=2+\frac{1}{n-2}\)

Vì \(2\in Z\Rightarrow\frac{1}{n-2}\in Z\Rightarrow n-2\inƯ\left(1\right)\)

\(\Rightarrow n-2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{1;3\right\}\)

26 tháng 9 2017

Ta có: \(4n+1⋮2n-1\Leftrightarrow4n-2+3⋮2n+1\)\(\Leftrightarrow2\left(2n-1\right)+3⋮2n-1\Leftrightarrow3⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2n=\left\{-2;0;2;4\right\}\)

Vì \(n\in N\)nên \(n=\left\{0;1;2\right\}\)

19 tháng 1 2017

B=\(3^1+3^2+3^3+...+3^{300}\)

  =\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{299}+3^{300}\right)\) 

  =\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{299}\left(1+3\right)\)

  =\(3.4+3^3.4+...+3^{299}.4\)

  =\(\left(3+3^3+...+3^{299}\right).4\)

Vì 4\(⋮\)2 mà trong một tích có 1 ts chia hết cho 2 thì tích đó chia hết cho 2 \(\Rightarrow\)B\(⋮\)2

1 tháng 8 2015

6410 -32 11 - 1613 = 260 - 255 - 252 = 252 . 28 - 252 . 23 - 252

= 252 ( 28 - 23 - 1) 

= 252 . 247 = 252 . 19 . 13

=> chia hết cho 19           

1 tháng 8 2015

cảm ơn nhiều ạ

chắc là lớp 8 hay 9 rồi đúng ko ạ ?

 

9 tháng 10 2017

\(a,\)Để \(n+3⋮n\)

Mà \(n⋮n\Rightarrow3⋮n\)

=> n là ước của 3 .

Mà n lại số tự nhiên 

\(\Rightarrow n=\left\{1;3\right\}\) 

\(b,\) Để \(n+8⋮n+1\)

\(\Rightarrow\left(n+1\right)+7⋮n+1\)

Mà \(n+1⋮n+1\Rightarrow7⋮n+1\)

\(\Rightarrow6⋮n\)

Mà n là số tự nhiên 

\(\Rightarrow n=\left\{1;2;3;6\right\}\)

22 tháng 7 2015

 

+ 40xy chia hết cho 4 nên 40xy là số chẵn => y là số chẵn

+ 40xy chia hết cho 5 nên y=0 hoặc y=5 do y chẵn nên y=0

+ 40xy=40x0 chia hết cho 3 nên 4+x chia hết cho 3 nên x=2 hặc x=5 hoặc x=8

=> x={2,5,8}; y=0