\(C=\frac{3}{1.4}+\frac{3}{4.7}+.......+\frac{3}{19.22}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)
\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{n\left(n+3\right)}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{267}{270}\)
=> \(\frac{1}{n+3}=\frac{1}{90}\)
=> n + 3 = 90
=> n = 87
Nhân cả 2 vế với 3 ta được:
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}=\frac{89}{90}.\)
Vậy tử số của các phân số trên đã bằng hiệu của 2 thừa số ở mẫu số.(Ngoại trừ P/S\(\frac{89}{90}.\))
=> ta được:
\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{n}-\frac{1}{n+3}=\frac{89}{90}.\)
Rút gọn hết ta được :
\(1-\frac{1}{n+3}=\frac{89}{90}\)
\(\frac{1}{n+3}=1-\frac{89}{90}\)
\(\frac{1}{n+3}=\frac{1}{90}.\)
Vì 1=1 => n+3=90
n = 90-3
n=87
Vậy n=87.
Đ/S:87
Ta có\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
= \(1-\frac{1}{46}\)
Vì \(1-\frac{1}{46}< 1\)nên S<1
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+.......+\frac{3}{43\cdot46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
Ta có \(1-\frac{1}{46}< 1\)=> S < 1
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+..+\frac{3}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-....+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
sửa lại đề \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(S=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(S=1-\frac{1}{17}=\frac{16}{17}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+.....+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Ta thấy :
\(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
\(.........\)
\(\frac{3}{97.100}=\frac{100-97}{97.100}=\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3\cdot\frac{99}{100}=\frac{297}{100}\)
đáp án = \(\frac{297}{100}\)
đúng không?
kết bạn với mh nha
\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
Có \(1-\frac{1}{46}< 1\)
\(\Rightarrow S< 1\)
nhan xet:3/1.4=1/1-1/4
3/4.7=1/4-1/7
3/7.10=1/7-1/10
.....................
3/40.43=1/40-1/43
3/43.46=1/43-1/46
S=1/1-1/3+1/3-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=46/46-1/46
S=45/46<1
vay s<1
Dạng này có nhiều rồi, bạn tham khảo câu hỏi tương tự cũng được
\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{22}.\)
\(C=\frac{1}{1}-\frac{1}{22}\)
\(C=\frac{21}{22}\)
\(C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{19.22}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{22}\)
\(=1-\frac{1}{22}\)
\(=\frac{21}{22}\)