Cho tam giác ABC nhọn, đường cao BE, CD
a) CM: \(\Delta ADE\)đồng dạng với \(\Delta ACB\)
b) Cho EB = EC; F là TĐ của EC. Đường thẳng \(\perp\) với BF tại O vẽ từ E cắt đường thẳng \(\perp\) EC vẽ từ C tại K. CMR: EF = CK và \(\frac{S_{EOF}}{S_{ECK}}=\frac{1}{5}\)
a) Xét 2 tam giác vuông ABE và ACD có góc A chung => tam giác ABE ~ tam giác ACD
=> AE/AB = AD/AC
Xét 2 tam giác ADE và ACB có: AE/AB = AD/AC và góc A chung => tam giác ADE ~ tam giác ACB ( đpcm )
b) Xét tam giác vuông EBF có OE là đường cao => tam giác OEF ~ tam giác OBE ( dễ tự cm nhé )
=> ^OEF = ^OBE
Xét 2 tam giác vuông BEF và ECK có: ^OEF = ^OBE => tam giác BEF ~ tam giác ECK => EF = CK ( đpcm )
Xét 2 tam giác vuông OEF và CEK có ^E là góc chung => tam giác OEF ~ tam giác CEK
=> OE/OF = CE/CK = CE/EF = 2 <=> OE = 2OF
do tam giác EOF ~ tam giác ECK nên \(\frac{S_{EOF}}{S_{ECK}}=\frac{OF^2}{CK^2}=\frac{OF^2}{EF^2}=\frac{OF^2}{OF^2+OE^2}=\frac{OF^2}{OF^2+4OF^2}=\frac{1}{5}\) ( đpcm )